-
The rapid development of the electrical and electronic industry requires components with miniaturization, flexibility, and intelligence. Dielectric materials, as important materials for the preparation of electronic components, are required to have excellent dielectric properties such as high breakdown electric field, high energy storage density and low dielectric loss. Owing to the lack of ultra-high resolution characterization tools, the research on the improvement of dielectric material properties stopped at a macroscopic level in the past. Atomic force microscopy, a measurement instrument which possesses a nanoscale high resolution, shows unique advantages in the study of nanodielectrics, and the advent of functional atomic force microscopy has made important contributions to characterization of the electrical, optical, and mechanical properties of nano-dielectric micro-regions. In this paper, we review the progress of atomic force microscopy, electrostatic force microscopy, Kelvin probe force microscopy, piezoelectric response force microscopy and atomic microscopy-infrared spectroscopy in the study of nanodielectric applications. Firstly, their structures and principles are introduced; secondly, their recent research progress of studying the microscopic morphology, interfacial structure, domain behavior and charge distribution in the nanometer region of dielectric materials is presented, and finally, the problems in the existing research and possible future research directions are discussed.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] -
分类 名称 功能 应用 表征材料
电学性能静电力显微镜[15] 运用导电悬臂探测样品表面铁电区域, 得到纳米尺度的区域电学性能图. 样品表面电势[21]
检测相间结构[22]
研究电荷传播[23]
检测电荷分布[24]
电荷存储[25]导电原子力显微镜[26] 使用导电的偏压探针接触式扫描样品表面, 测量样品导电性. 测量局域电导率[27]
测量电流-电压曲线[28]
绘制能带分布[29]
研究纳米级电阻开关[28]开尔文探针力显微镜[16] 在非接触模式下通过检测探针与样品之间的静电信号提供样品表面电势等相关信息. 测量探针尖端和样品表面电位差[30]
测量空间电荷分布[31]
评估缺陷状态[32]压电响应力显微镜[33] 在接触模式下基于逆压电效应原理测量样品的局域压电响应能力. 研究铁电畴[34]
记录纳米级磁滞回线[35]
检测电致收缩/膨胀[36]
观察拓扑状态[37]扫描电容显微镜[38] 记录样品和金属探针之间的局部电容变化. 测量局部电容[39]
测量载流子浓度分布[40]
局部电荷的捕捉/释放[41]表征材料
化学结构原子力显微镜-红外光谱[20] 使用AFM探针的端检测样品特定区域中由于吸收红外辐射而导致的热膨胀, 来获得样品的红外吸收光谱及化学成分分布图谱. 纳米级红外光谱[42]
化学成分分布[43]
材料组分逆向分析[43]
纳米结晶度变化[44]
纤维中的分子取向[45]拉曼光谱-原子力显微镜[46] 使用激发激光来检测样品表面光学信号, 提供局部拉曼光谱, 表征样品表面的局部化学组成. 分析化学成分[47]
分析化学构象
获取形貌信息[48]
测量黏弹性[49]表征材料
力学性能力调制显微镜[50] 计算样品表面硬度、黏弹性等力学性能. 测量存储模量和损耗模量[51]
测量局部杨氏模量[52]
测量表面弹性变化[53]横向力显微镜[54] 通过检测悬臂在扫描样品时的扭曲来检测样品的摩擦力、黏附力等力学性能. 测量微区摩擦性能[55]
测量样品刚度[56]
测量表面黏附力
测量拓扑特性[57] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119]
计量
- 文章访问数:6765
- PDF下载量:117
- 被引次数:0