-
通过系统地考虑相对论效应、价壳层电子之间的电子关联效应、量子电动力学效应和Breit相互作用, 使用基于多组态Dirac-Hartree-Fock (MCDHF)方法的GRASP2K程序, 系统地计算了超重元素Og( Z= 118)及其同主族元素Ar, Kr, Xe和Rn的原子及其一价至五价离子的电离能. 为了降低电离能中来源于未完全考虑电子关联效应引起的不确定度, 使用外推方法对超重元素Og及其同主族元素Rn的原子及一价至五价离子的电离能进行了外推. 外推得到的Rn 0–5+和Og +的电离能与实验值和其他理论值吻合得很好. 这些结果可用于预言超重元素Og的原子和化合物未知的物理和化学性质. 除此之外, 相对论和非相对论情况下超重元素Og及其同主族元素Ar, Kr, Xe和Rn的原子价壳层电子轨道束缚能的计算结果表明, 受相对论效应影响, 超重元素Og中的7s和7p 1/2轨道出现了很强的轨道收缩现象, 7p 1/2和7p 3/2轨道出现了很强的分裂现象, 这些现象可能会导致超重元素Og的物理和化学性质异于同主族其他元素.
-
关键词:
- 多组态Dirac-Hartree-Fock方法/
- 超重元素/
- 电离能/
- 轨道束缚能
The ionization energy of the superheavy element Og ( Z= 118) and its homolog elements Ar, Kr, Xe, Rn, and their ions are systematically calculated by using the GRASP2K program based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, taking into account relativistic effects, electron correlation effects between valence shell electrons, quantum electrodynamics effects, and Breit interaction. To reduce the uncertainty of the ionization energy derived from electron correlation effects which are not fully considered, the ionization potential of the superheavy element Og 0–2+and its homolog element Rn 0–2+are extrapolated by the extrapolation method. The ionization energy of extrapolated Rn 0–5+and Og 5+coincide well with experimental and other theoretical values. These results can be used to predict the unknown physical and chemical properties of the atoms and compounds of the superheavy element Og. In addition, the calculation results of the electron orbital binding energy of the atomic valence shell of the superheavy element Og and its homolog elements Ar, Kr, Xe, and Rn under relativistic and non-relativistic conditions show that owing to the relativistic effect, there occur strong orbital contraction phenomena in the 7s orbital and 7p 1/2orbital and strong splitting phenomena in the 7p 1/2orbital and 7p 3/2orbital of Og, which may cause the physical and chemical properties of the superheavy element Og to differ from those of other homologs.-
Keywords:
- multi-configuration Dirac-Hartree-Fock method/
- superheavy element/
- ionization potential/
- orbital binding energy
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] -
电子组态 关联模型 活动空间 组态波函数数目 Og (J= 0+) [Rn]5f146d107s27p6 DHF {n7l1} 1 7SD {n7l2} 14 8SD 7SD + {n8l3} 143 9SD 8SD + {n9l4} 468 10SD 9SD + {n10l4} 987 11SD 10SD + {n11l4} 1700 12SD 11SD + {n12l4} 2607 Og1+(J= 3/2–) [Rn]5f146d107s27p5 DHF {n7l1} 1 7SD {n7l2} 51 8SD 7SD + {n8l3} 758 9SD 8SD + {n9l4} 2738 10SD 9SD + {n10l4} 5982 11SD 10SD + {n11l4} 10490 12SD 11SD + {n12l4} 16262 Og2+(J= 2+) [Rn]5f146d107s27p4 DHF {n7l1} 2 7SD {n7l2} 76 8SD 7SD + {n8l3} 1054 9SD 8SD + {n9l4} 3841 10SD 9SD + {n10l4} 8404 11SD 10SD + {n11l4} 14743 12SD 11SD + {n12l4} 22858 Og3+(J= 3/2–) [Rn]5f146d107s27p3 DHF {n7l1} 3 7SD {n7l2} 66 8SD 7SD + {n8l3} 802 9SD 8SD + {n9l4} 2816 10SD 9SD + {n10l4} 6094 11SD 10SD + {n11l4} 10636 12SD 11SD + {n12l4} 16442 Og4+(J= 0+) [Rn]5f146d107s27p2 DHF {n7l1} 2 7SD {n7l2} 22 8SD 7SD + {n8l3} 163 9SD 8SD + {n9l4} 500 10SD 9SD + {n10l4} 1031 11SD 10SD + {n11l4} 1756 12SD 11SD + {n12l4} 2675 Og5+(J= 1/2–) [Rn]5f146d107s27p1 DHF {n7l1} 1 7SD {n7l2} 13 8SD 7SD + {n8l3} 96 9SD 8SD + {n9l4} 293 10SD 9SD + {n10l4} 606 11SD 10SD + {n11l4} 1035 12SD 11SD + {n12l4} 1580 Og6+(J= 0+) [Rn]5f146d107s2 DHF {n7l1} 1 7SD {n7l2} 5 8SD 7SD + {n8l3} 17 9SD 8SD + {n9l4} 38 10SD 9SD + {n10l4} 68 11SD 10SD + {n11l4} 107 12SD 11SD + {n12l4} 155 元素 MCDHF NIST[48] α β 外推值 误差 Others IP1 Ar 15.50 15.76* 0.26 Kr 13.74 14.00* 0.26 0.00 Xe 11.85 12.13* 0.28 0.02 Rn 10.48 10.75* (0.32) (0.04) 10.80 0.04 10.76[12] Og 8.53 (0.38) (0.06) 8.91 0.06 8.86[13]
8.87[20]
8.91[22]
8.84[23]
8.88[12]IP2 Ar 27.36 27.63* 0.27 Kr 24.06 24.36* 0.30 0.03 Xe 20.63 20.98* 0.35 0.05 Rn 18.65 21.40±1.90 (0.42) (0.07) 19.07 0.07 18.99[12] Og 15.80 (0.51) (0.09) 16.31 0.09 16.19[12] IP3 Ar 40.45 40.74*±0.01 0.29 Kr 35.49 35.84*±0.02 0.35 0.06 Xe 30.60 31.05*±0.04 0.45 0.10 Rn 28.21 29.40±1.00 (0.59) (0.14) 28.80 0.14 Og 24.28 (0.77) (0.18) 25.05 0.18 IP4 Ar 58.96 59.58±0.18 0.62 Kr 50.48 50.85*±0.11 0.37 Xe 42.11 42.20*±0.20 0.09 Rn 37.88 36.90±1.70 (0.44) 38.32 1.53 Og 32.70 (0.55) 33.25 0.99 IP5 Ar 74.60 74.84±0.17 0.24 Kr 64.08 64.69*±0.20 0.61 Xe 54.38 54.10*±0.50 –0.28 Rn 52.83 52.90±1.90 (0.44) 53.27 2.13 Og 55.37 (0.55) 55.92 2.24 IP6 Ar 91.13 91.29* 0.16 Kr 78.07 78.49*±0.20 0.42 Xe 66.16 66.70* 0.54 Rn 64.42 64.00±2.00 (0.44) 64.86 2.59 Og 67.04 (0.55) 67.59 2.70 轨道 Ar Kr Xe Rn Og R NR R NR R NR R NR R NR $ {n\mathrm{s}}_{1/2} $ 1.29 1.28 1.19 1.15 1.01 0.94 1.07 0.87 1.30 0.77 $ {n\mathrm{p}}_{1/2} $ 0.60 0.59 0.54 0.52 0.49 0.46 0.54 0.43 0.74 0.39 $ {n\mathrm{p}}_{3/2} $ 0.59 0.59 0.51 0.52 0.44 0.46 0.38 0.43 0.31 0.39 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
计量
- 文章访问数:3406
- PDF下载量:60
- 被引次数:0