-
二维磁性材料的自发磁化可以维持到单层极限下, 为在二维尺度理解和调控磁相关性质提供了一个理想的平台, 也使其在光电子学和自旋电子学等领域具有重要的应用前景. 晶体结构为层状堆叠的过渡金属卤化物具有部分填充的d轨道和较弱的范德瓦耳斯层间相互作用等特性, 是合适的二维磁性候选材料. 结合分子束外延 (MBE)技术, 不仅可以精准调控二维磁性材料生长达到单层极限, 而且可以结合扫描隧道显微术等先进实验技术开展原子尺度上的物性表征和调控. 本文详细介绍了多种二维磁性过渡金属卤化物的晶体结构和磁结构, 并展示了近几年来通过MBE技术生长的二维磁性过渡金属卤化物以及相应的电学和磁学性质. 随后, 讨论了基于MBE方法对二维磁性过渡金属卤化物的物性进行调控的方法, 包括调控层间堆垛、缺陷工程以及构筑异质结. 最后, 总结并展望了二维磁性过渡金属卤化物研究领域在未来的发展机会与挑战.The spontaneous magnetization of two-dimensional (2D) magnetic materials can be maintained down to the monolayer limit, providing an ideal platform for understanding and manipulating magnetic-related properties on a 2D scale, and making it important for potential applications in optoelectronics and spintronics. Transition metal halides (TMHs) are suitable 2D magnetic candidates due to partially filled d orbitals and weak interlayer van der Waals interactions. As a sophisticated thin film growth technique, molecular beam epitaxy (MBE) can precisely tune the growth of 2D magnetic materials reaching the monolayer limit. Moreover, combining with the advanced experimental techniques such as scanning tunneling microscopy, the physical properties of 2D magnetic materials can be characterized and manipulated on an atomic scale. Herein, we introduce the crystalline and magnetic structures of 2D magnetic TMHs, and show the 2D magnetic TMHs grown by MBE and their electronic and magnetic characterizations. Then, the MBE-based methods for tuning the physical property of 2D magnetic TMHs, including tuning interlayer stacking, defect engineering, and constructing heterostructures, are discussed. Finally, the future development opportunities and challenges in the field of the research of 2D magnetic TMHs are summarized and prospected.
-
Keywords:
- transition metal halides/
- molecular beam epitaxy/
- scanning tunneling microscopy/
- two-dimensional magnetism.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] -
材料 面内晶格常数/Å 磁耦合 转变温度 磁易轴 单层电学性质 参考文献 VCl2 3.58 120°-AFM/bulk TN= 36 K/bulk // Insulator [36–38,46] 120°-AFM/1L VBr2 3.76 120°-AFM/bulk TN= 30 K/bulk // Insulator [36–38,46] 120°-AFM/1L VI2 4.04 AFM /bulk TN= 16 K/bulk // Insulator [36–38,46] 120°-AFM/1L CrCl2 3.55 AFM/1L ⊥ [36,38] CrBr2 3.74 AFM/1L ⊥ [36,38] CrI${}_2^* $ a1= 3.88,a2= 4.23,
a3= 4.18FM/1L ⊥ Mott insulator [35] MnCl2 3.64 AFM/bulk TN= 2 K/bulk // Insulator [36,38,47] 120°-AFM/1L MnBr2 3.80 AFM/bulk TN= 2 K/bulk // Insulator [36,38,48] 120°-AFM/1L MnI${}_2^* $ 4.06 HM/bulk TN= 3.4 K/bulk // Insulator [36,38,49] 120°-AFM/1L FeCl${}_2^* $ 3.43 AFM/bulk TN= 24 K/bulk ⊥ HM [37,38,50] FM/1L TC= 109 K/1L FeBr2 3.63 AFM/bulk TN= 14 K/bulk ⊥ HM [37,38,50] FM/1L TC= 81 K/1L FeI2 3.91 AFM/bulk TN= 9 K/bulk ⊥ HM [37,38,51] FM/1L TC= 42 K/1L CoCl2 3.42 AFM/bulk TN= 25 K/bulk // Insulator [37,38,52] FM/1L TC= 85 K/1L CoBr2 3.62 AFM/bulk TN= 18 K/bulk // Insulator [37,38,50] FM/1L TC= 23 K/1L CoI2 3.80 HM/bulk TN= 11 K/bulk Insulator [42,53] HM NiCl2 3.50 AFM/bulk TN= 52 K/bulk // Insulator [38,39,54] FM/1L TC= 118 K/1L NiBr${}_2^* $ 3.80 HM/bulk TN= 23 K/bulk // Ferroelectric insulator [40,55] Noncollinear/1L TC= 28 K/1L NiI2 3.88 HM/bulk TN= 60 K/bulk Ferroelectric semiconductor [41] HM/1L TN= 21 K/1L VCl3 6.28 AFM/bulk TN= 20 K/bulk ⊥ DHM [56,57] FM/1L TC= 80 K/1L VBr3 6.37 AFM/bulk TN= 27 K/bulk // Semiconductor [58,59] FM/1L TC= 20 K/1L VI3 6.83 FM/ interlayer Tc = 50 K/bulk ⊥ Mott insulator [30,60] FM/ intralayer TC= 60 K/1L CrCl${}_3^* $ 6.01 AFM/ interlayer TN= 17 K/bulk // Semiconductor [22,61] FM/ intralayer TC= 13 K/1L CrBr${}_3^* $ 6.30 FM/ interlayer Tc = 37 K/bulk ⊥ Semiconductor [20,62] FM/ intralayer TC= 34 K/1L CrI${}_3^* $ 6.95 FM/ intralayer Tc = 61 K/bulk ⊥ Semiconductor [16,63] AFM/ few L TC= 45 K/1L MnCl3 6.21 FM/1L // DHM [64] MnBr3 6.58 FM/1L // DHM [64] MnI3 7.08 FM/1L // DHM [64] FeCl3 6.22 HM/bulk TN= 15 K/bulk ⊥ Semiconductor [65,66] FM/1L FeBr3 6.61 AFM/bulk TN= 16 K/bulk ⊥ Semiconductor [65,67] FM FeI3 7.12 FM/1L ⊥ Semiconductor [65] NiCl3 5.94 FM/1L TC= 497 K/1L ⊥ DHM [68] NiBr3 6.31 FM/1L TC= 595 K/1L // DHM [68] NiI3 6.82 FM/1L TC= 682 K/1L ⊥ DHM [68] α-RuCl${}_3^* $ 6.19 AFM QSL/bulk TN= 7 K/bulk Mott insulator [44,45,69] AFM QSL/1L RuBr3 6.25 FM/1L ⊥ TI [70] RuI3 7.10 FM/1 L TC= 360 K/1L ⊥ TI [70] 注: FM, AFM, HM, QSL分别表示铁磁态、反铁磁态、螺旋磁态、量子自旋液体态. 在表格中, 灰色填充表示理论计算预测的二维磁性过渡金属卤化物; 黄色填充表示已合成的二维磁性过渡金属卤化物, 但是还缺乏磁性表征; 绿色填充表示已证实的二维磁性过渡金属卤化物.
*表示已实现MBE制备的过渡金属卤化物. //和⊥分别表示平面内、平面外磁易轴. HM, DHM和TI分别表示磁性半金属、狄拉克半金属和拓扑绝缘体. -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148]
计量
- 文章访问数:8352
- PDF下载量:456
- 被引次数:0