搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛

    First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface

    Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao
    PDF
    HTML
    导出引用
    • 铀及铀合金贮存环境中的水分子与铀反应会产生氢气 (H 2) , 进而对铀表面产生腐蚀作用. 基于密度泛函理论, 本文开展了H 2在钼 (Mo) 涂层γ-U(100) 表面(U(100)/Mo) 吸附行为的第一性原理研究, 建立了γ-U(100)及U(100)/Mo表面模型, 计算了H 2在不同吸附位点下的结构参数、吸附能、Bader电荷、表面功函数、电子态密度. 研究结果表明, H 2在γ-U(100) 和U(100)/Mo表面的吸附主要为物理吸附, 在空位平行吸附构型下, H 2完全解离成两个H原子, 化学吸附于基底表面. Bader电荷分布结果表明, 此时净电荷的变化量大于物理吸附时对应的净电荷变化量. H 2在U(100)/Mo表面最稳定吸附构型下 (H Mo-Hor) 的吸附能小于γ-U(100) 表面最稳定吸附构型 (H U-Hor) 的吸附能, 相比于H 2在γ-U(100) 表面的吸附, H 2在U(100)/Mo表面的吸附更稳定. 本文为铀合金及其Mo涂层表面氢化腐蚀研究提供了理论依据, 为未来开展铀合金表面抗腐蚀研究提供理论基础和实验技术支持.
      Uranium (U) is one of the most natural radioactive elements widely used in the nuclear industry. In the civilian field, uranium is the most important nuclear fuel in nuclear reactors; militarily, uranium is an important raw material for nuclear weapons. In addition, uranium is also used for radiation shielding and ship ballast due to its high-density properties. Depending on the temperature, U has three kinds of allotrope phases: the orthogonal α phase at temperature below 940 K, the body-centered tetragonal (BCT) β phase at temperature ranging from 940 K to 1050 K, and the body-centered cubic (BCC) γ phase at temperature above 1050 K. Compared with the other two structures, the crystal structure of γ phase has good symmetry and excellent mechanical properties. However, γ-U is extremely unstable at low temperature. No matter what heat treatment method is adopted, γ-U will undergo phase transformation and become α phase. It is shown that adding certain alloying elements, such as Mo, Nb, Zr, Ti and Hf, into uranium can stabilize γ-U to room temperature and improve the mechanical properties of uranium greatly. As an important uranium alloy, γ-U by doping Mo atom has excellent mechanical properties, structural stability and thermal conductivity, and is an important nuclear reactor fuel. However, uranium has special physical and chemical properties due to its complex electronic structure and strong correlation of 5f electrons. Because of its special valence electron structure, it is highly susceptible to chemical and electrochemical reactions of environmental media. After the reaction between uranium and hydrogen, hydrogen embrittlement will occur, and even easily break into powder, which reduces the performance of uranium in service and brings hidden trouble to its storage. With the increase of service life, surface corrosion becomes more serious, and the safety and reliability of U alloys are seriously affected. The adsorption and dissociation of hydrogen on U alloy surface is the primary process of hydrogenation corrosion. Based on density functional theory, first-principles study of hydrogen adsorption and dissociation on γ-U(100) surface by Mo atoms coatings is carried out in this work. The model of γ-U(100) and Mo atoms coatings on γ-U(100) surface are established, and the structural parameters, adsorption energy, Bader charge, surface work function, and electron state density of H 2at highly symmetrical adsorption sites are calculated. The results show that H 2molecule occurs when physical dissociation adsorption takes place on γ-U(100) and U(100)/Mo surface. The electron state density shows that H 2does not bond to the surface atoms and no new hybridization peak appears. However, in the hollow parallel adsorption configuration, H 2is completely dissociated into two H atoms and occurs chemical adsorption and dissociation on γ-U(100) and U(100)/Mo surface. The H/1s orbital electrons are hybridized with the U/6p, U/6d, Mo/5s, Mo/4p, Mo/4d orbital electrons, and the H atom forms stable chemical bonds with the Mo atoms. Bader charge distribution results show that the change of chemical adsorption net charge of H 2on U(100)/Mo is more than that of physical adsorption. Because the adsorption energy of H 2in the most stable configuration (H Mo-Hor) on U(100)/Mo is less than that of the most stable configuration (H U-Hor) on γ-U(100), the adsorption of H 2on U(100)/Mo is more stable than that of γ-U(100) surface.
          通信作者:李正操,zcli@tsinghua.edu.cn; 王金涛,wangjintaolove@126.com
        • 基金项目:国家自然科学基金(批准号: 11975135, 12005017)和国家重点基础研究发展计划(批准号: 2020YFB1901800)资助的课题.
          Corresponding author:Li Zheng-Cao,zcli@tsinghua.edu.cn; Wang Jin-Tao,wangjintaolove@126.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11975135, 12005017) and the National Basic Research Program of China (Grant No. 2020YFB1901800).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

      • Configuration Eads/eV hH1-Surf hH2-Surf dH1-U dH2-U dH1-H2
        TU–Hor –0.451 1.296 1.296 2.150 2.150 3.430
        TU–Ver –0.020 3.636 4.389 3.636 4.389 0.753
        HU–Hor –0.454 1.301 1.301 2.155 2.155 3.330
        HU–Ver –0.028 3.358 4.112 4.143 4.775 0.755
        BU–Hor –0.014 4.183 4.183 4.393 4.393 0.750
        BU–Hor2 0.030 1.767 1.767 2.498 2.498 0.829
        BU–Ver –0.021 3.258 4.014 3.683 4.365 0.756
        下载: 导出CSV

        Configuration Eads/eV hH1-Surf hH2-Surf dH1-U dH2-U dH1-Mo dH2-Mo dH1-H2
        TMo–Hor –0.331 1.978 1.978 3.849 3.849 2.019 2.019 0.807
        TMo–Ver –0.026 2.635 3.390 3.390 3.390 2.635 2.635 0.755
        HMo–Hor –0.746 0.783 0.783 1.939 1.939 2.381 2.381 2.540
        HMo–Ver –0.029 3.756 3.003 4.962 4.209 4.472 3.861 0.753
        BMo–Hor –0.015 4.016 4.016 5.509 5.509 4.234 4.234 0.751
        BMo–Hor2 0.118 1.599 1.599 3.095 3.095 2.381 2.381 0.819
        BMo–Ver –0.029 3.715 2.960 5.211 4.506 4.092 3.422 0.754
        下载: 导出CSV

        Configuration qH1/e qH2/e qtotal/e q1 st/e q2 nd/e q3 rd/e q4 th/e q5 th/e
        Atom 0.0616 –0.0616 0
        free surface 1.0016 –0.5646 –0.6812 0.7102 –0.5094
        TMo-Hor –0.0297 0.0883 0.0586 0.9551 –0.6080 –0.6148 0.6679 –0.5000
        TMo-Ver –0.0619 0.0812 0.0193 1.0149 –0.5955 –0.6572 0.6838 –0.5089
        HMo-Hor 0.3806 0.3806 0.7612 0.4796 –0.8028 –0.6881 0.6848 –0.4759
        HMo-Ver –0.0362 0.0504 0.0142 0.9853 –0.5404 –0.7052 0.7109 –0.5094
        BMo-Hor –0.0665 0.0700 0.0035 1.0006 –0.5761 –0.6594 0.6830 –0.5085
        BMo-Hor2 0.1220 0.0058 0.1278 0.9261 –0.6205 –0.6598 0.6697 –0.4848
        BMo-Ver 0.0317 –0.0162 0.0155 1.0037 –0.5741 –0.6773 0.6963 –0.5087
        下载: 导出CSV

        Slap γ-U(100) 文献[15] U(100)/Mo
        Δd12/d0 –25.041% –26.4% –29.875%
        Δd23/d0 14.239% 15.6% 8.773%
        Δd34/d0 –8.289% 4.246%
        下载: 导出CSV

        Configuration Evacuum/eV EFermi/eV Φ/eV ΔΦ/eV
        Free surface 7.1244 3.0700 4.0544
        TMo-Hor 6.9897 3.1306 3.8591 –0.1953
        TMo-Ver 6.9469 3.0510 3.8959 –0.1585
        HMo-Hor 7.1502 3.0213 4.1289 0.0745
        HMo-Ver 7.0689 3.0241 4.0448 –0.0096
        BMo-Hor 7.1045 3.1394 3.9651 –0.0893
        BMo-Ver 7.0430 3.0314 4.0116 –0.0428
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

      • [1] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃.各Li吸附组分下硅烯氢存储性能的第一性原理研究. 必威体育下载 , 2018, 67(10): 107103.doi:10.7498/aps.67.20172720
        [2] 王立鹏, 江新标, 吴宏春, 樊慧庆.氮化铀热中子截面的第一性原理计算. 必威体育下载 , 2018, 67(20): 202801.doi:10.7498/aps.67.20180834
        [3] 刘坤, 王福合, 尚家香.NiTi(110)表面氧原子吸附的第一性原理研究. 必威体育下载 , 2017, 66(21): 216801.doi:10.7498/aps.66.216801
        [4] 姜平国, 汪正兵, 闫永播.三氧化钨表面氢吸附机理的第一性原理研究. 必威体育下载 , 2017, 66(8): 086801.doi:10.7498/aps.66.086801
        [5] 杨光敏, 梁志聪, 黄海华.石墨烯吸附Li团簇的第一性原理计算. 必威体育下载 , 2017, 66(5): 057301.doi:10.7498/aps.66.057301
        [6] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏.铀基非晶合金的发展现状. 必威体育下载 , 2017, 66(17): 176104.doi:10.7498/aps.66.176104
        [7] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越.活性质吸附氢修饰金刚石表面的第一性原理研究. 必威体育下载 , 2016, 65(23): 236802.doi:10.7498/aps.65.236802
        [8] 黄艳平, 袁健美, 郭刚, 毛宇亮.硅烯饱和吸附碱金属原子的第一性原理研究. 必威体育下载 , 2015, 64(1): 013101.doi:10.7498/aps.64.013101
        [9] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军.通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 必威体育下载 , 2014, 63(7): 078101.doi:10.7498/aps.63.078101
        [10] 张杨, 黄燕, 陈效双, 陆卫.InSb(110)表面S,O原子吸附的第一性原理研究. 必威体育下载 , 2013, 62(20): 206102.doi:10.7498/aps.62.206102
        [11] 罗强, 唐斌, 张智, 冉曾令.H2S在Fe(100)面吸附的第一性原理研究. 必威体育下载 , 2013, 62(7): 077101.doi:10.7498/aps.62.077101
        [12] 房彩红, 尚家香, 刘增辉.氧在Nb(110)表面吸附的第一性原理研究. 必威体育下载 , 2012, 61(4): 047101.doi:10.7498/aps.61.047101
        [13] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华.一种基于光子晶体结构的坦克涂层设计. 必威体育下载 , 2012, 61(16): 164102.doi:10.7498/aps.61.164102
        [14] 李琦, 范广涵, 熊伟平, 章勇.ZnO 极性表面及其N原子吸附机理的第一性原理研究. 必威体育下载 , 2010, 59(6): 4170-4177.doi:10.7498/aps.59.4170
        [15] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明.NiTi合金的第一性原理研究. 必威体育下载 , 2008, 57(11): 7204-7209.doi:10.7498/aps.57.7204
        [16] 张 辉, 张国英, 何君琦, 王 丹, 杨 爽.杂质对吸附系统O/RhxPt1-x衬底合金(110)表面偏析的影响. 必威体育下载 , 2008, 57(3): 1846-1850.doi:10.7498/aps.57.1846
        [17] 刘以良, 孔凡杰, 杨缤维, 蒋 刚.金刚石延(111)面生长的第一性原理研究. 必威体育下载 , 2007, 56(9): 5413-5417.doi:10.7498/aps.56.5413
        [18] 张 辉, 张国英, 王瑞丹, 周永军, 李 星.无序二元合金(NixCu1-x)不同解理面上O吸附对Cu偏析的影响. 必威体育下载 , 2005, 54(11): 5356-5361.doi:10.7498/aps.54.5356
        [19] 张 辉, 张国英, 李 星, 刘士阳.无序二元合金(NixCu1-x)表面CO吸附及对表面偏析的影响. 必威体育下载 , 2004, 53(9): 3152-3156.doi:10.7498/aps.53.3152
        [20] 李红海, 李英德, 王传奎.分子和金表面相互作用的第一性原理研究. 必威体育下载 , 2002, 51(6): 1239-1243.doi:10.7498/aps.51.1239
      计量
      • 文章访问数:4164
      • PDF下载量:109
      • 被引次数:0
      出版历程
      • 收稿日期:2022-04-07
      • 修回日期:2022-07-05
      • 上网日期:2022-11-04
      • 刊出日期:2022-11-20

        返回文章
        返回
          Baidu
          map