-
鉴于“摩尔定律”已经逼近极限, 众多替代传统计算的方法被提出, 其中量子计算是最受关注和研究最广泛的一种. 由于量子体系的不可封闭性, 外界大量不可控的因素会导致量子耗散和退相干, 为了尽可能避免量子叠加态的退相干, 制备具有鲁棒性的量子比特成为了关键环节之一. 马约拉纳零能模是拓扑和超导复合体系中涌现的准粒子, 具有非阿贝尔统计性质, 它的时空编织受到非局域的拓扑性质保护, 因此, 以马约拉纳零能模构造的拓扑量子比特对量子退相干具有天然的鲁棒性. 虽然经过全球范围内各个实验组艰苦卓绝的探求, 目前关于马约拉纳零能模的实验验证仍然扑朔迷离. 本文回顾了量子计算的发展历程和主要的技术手段, 重点介绍了拓扑超导态/体的理论、可观测的实验现象、以及最新的实验研究进展, 并对此做出了分析和评述. 最后对拓扑超导态/体在量子计算领域的应用前景进行了展望.Since the physical limit of Moore's law is being approached, many alternative computing methods have been proposed, among which quantum computing is the most concerned and widely studied. Owing to the non closeability of quantum system, the uncontrollable external factors will lead to quantum dissipation and decoherence. In order to avoid the decoherence of quantum superposition state, the fabrication of robust quantum bits has become one of the key factors. Majorana zero mode (MZM) is a quasi-particle emerging in the topological and superconducting hybrid system. It has non-Abelian statistical properties. Therefore, the topological qubit constructed by MZM has natural robustness to quantum decoherence. Despite the arduous exploration by various experimental groups, the experimental verification of MZM is still lacking. This paper reviews the history and main technical routes of quantum computing, focusing on the theory of topological superconductors, observable experimental phenomena, and the latest experimental progress. Furthermore we discuss and analyze the present status of the topological superconductor research. Finally, we prospect the future experiments and applications of topological superconductors in quantum computing.
-
Keywords:
- quantum computing/
- topological superconductor
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191]
计量
- 文章访问数:9405
- PDF下载量:444
- 被引次数:0