-
为得到GdTaO 4:RE/Yb(RE = Tm, Er)系列最大特征发光强度的上转换荧光粉, 通过试验优化设计建立了980 nm激光激发下荧光粉发光强度与其稀土掺杂浓度的回归方程, 其中Tm 3+/Yb 3+样品结合均匀设计和二次通用旋转组合设计, Er 3+/Yb 3+样品则利用均匀设计和三次正交多项式回归设计分步寻优. 检验并求解回归方程, 分析浓度与发光强度关系, 结果表明RE 3+(RE = Tm, Er)和Yb 3+浓度变化均对发光强度影响显著, 且在试验空间中存在光强极值点. 同条件下再次通过高温固相法制备最优发光样品. 分析最优样品X射线衍射(XRD)图谱, 结果表明样品均为纯相, Li +助熔剂掺杂会抑制反应杂相的产生, 稀土的掺入使衍射峰向高角度偏移, 且不改变峰形. 分析激发功率与发光强度的关系, 结果表明Tm 3+/Yb 3+共掺的蓝光发射为三光子过程, Er 3+/Yb 3+共掺的绿光发射为双光子过程. 分析样品温度与发光强度的关系, 各样品发光强度随温度升高而降低, 表明各样品发生温度猝灭, 由此计算了样品的激活能.
-
关键词:
- 上转换发光/
- 二次通用旋转组合设计/
- 正交多项式回归设计/
- GdTaO4:RE/Yb(RE = Tm/
- Er)
In order to obtain the maximum characteristic intensities of the up-conversion luminescence in GdTaO 4:RE/Yb(RE = Tm, Er) series, we establish the regression equation between the luminescent intensity of the phosphors and the rare earth doping concentration upon the 980 nm laser excitation based on the experimental optimization design. The Tm 3+/Yb 3+doping samples are combined with the uniform design and quadratic general rotation combination design, meanwhile the Er 3+/Yb 3+doping samples are optimized by the uniform design and cubic orthogonal phosphor step by step. The relationship between concentration and luminous intensity is analyzed. The results show that the changes of concentration of RE 3+(RE = Tm, Er) and Yb 3+can exert a significant effect on luminous intensity, and there exist extreme points of luminescent intensity in the test space. By solving the regression equation, we obtain the optimal doping concentration. The optimal samples are also prepared by the high-temperature solid state method. The XRD diffraction patterns of the optimal samples are analyzed. The results show that the samples are of pure phase, the doping of Li +flux will inhibit the generation of reaction impurity phase, and the doping of rare earth will shift the diffraction peak to a high angle, with the peak shape remaining unchanged. The relationship between excitation power and luminescent intensity is analyzed. The results show that the blue light emission of Tm 3+/Yb 3+co-doped phosphor is a three-photon process, and the green light emission of Er 3+/Yb 3+co-coped phosphor is a two-photon process. The relationship between sample temperature and luminescent intensity is analyzed. The luminescent intensity of the sample decreases with the increase of the temperature, indicating temperature quenching. Finally, the quenching activated energy of the sample is calculated.-
Keywords:
- up-conversion/
- quadratic general rotary unitized design/
- orthogonal polynomial regression design/
- GdTaO4:RE/Yb(RE = Tm/
- Er)
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] -
No. Factors ${y_{\rm{b\_int} } }$/(arb. units) Tm3+/mol% Yb3+/mol% 1 1 (0.1) 4 (6.25) 14548.3 2 2 (0.9625) 8 (13.25) 40832.1 3 3 (1.825) 3 (4.5) 16268.4 4 4 (2.6875) 7 (11.5) 27236.0 5 5 (3.55) 2 (2.75) 7918.2 6 6 (4.4125) 6 (9.75) 10844.0 7 7 (5.275) 1 (1) 2176.0 8 8 (6.1375) 5 (8) 7370.5 9 9 (7) 9 (15) 7673.2 No. Factors ${y_{\rm{g\_int}}}$/(arb. units) Er3+/mol% Yb3+/mol% 1 1 (1) 7 (32) 2615.08 2 2 (3.9) 3 (14) 65415.60 3 3 (6.8) 10 (45.5) 13779.16 4 4 (9.7) 6 (27.5) 67919.49 5 5 (12.6) 2 (9.5) 53751.00 6 6 (15.5) 9 (41) 27765.73 7 7 (18.4) 5 (23) 60404.28 8 8 (21.3) 1 (5) 27232.45 9 9 (24.2) 8 (36.5) 25725.90 10 10 (27.1) 4 (18.5) 45363.83 11 11 (30) 11 (50) 5775.05 xj(zj) z1 z2 Tm3+/mol% Yb3+/mol% $ r({z_{2 j}}) $ 0.4 20 $ 1({z_{0 j}} + {\Delta _j}) $ 0.3444 18.5361 $ 0({z_{0 j}}) $ 0.21 15 $ - 1({z_{0 j}} - {\Delta _j}) $ 0.0756 11.4639 $ - r({z_{1 j}}) $ 0.02 10 $ {\Delta _j} = ({{{z_{2 j}} - {z_{1 j}}}})/{{2 r}} $ 0.1344 3.5361 $ {x_j} = \dfrac{{{z_j} - {z_{0 j}}}}{{{\Delta _j}}} $ $ {x_1} = \dfrac{{{z_1} - 0.21}}{{0.1344}} $ $ {x_2} = \dfrac{{{z_2} - 15}}{{3.5361}} $ No. Factors ${y_{\rm{b\_int}} }$/
(arb. units)$ {x_0} $ $ {x_1}({z_1}) $ $ {x_2}({z_2}) $ $ {x_1}{x_2} $ $ x_1^2 $ $ x_2^2 $ 1 1 1 1 1 1 1 103074.268 2 1 1 –1 –1 1 1 82246.127 3 1 –1 1 –1 1 1 52874.380 4 1 –1 –1 1 1 1 59604.598 5 1 r 0 0 r2 0 99703.531 6 1 –r 0 0 r2 0 52894.450 7 1 0 r 0 0 r2 102782.281 8 1 0 –r 0 0 r2 92052.066 9 1 0 0 0 0 0 91641.231 10 1 0 0 0 0 0 119721.420 11 1 0 0 0 0 0 107477.062 12 1 0 0 0 0 0 102883.388 13 1 0 0 0 0 0 100900.284 No. scheme ψ0 X1
(z1)X2
(z1)X3
(z1)X1
(z2)X2
(z2)X3
(z2)X1X1
(z1z2)${y_{\rm{g\_int}} }$/
(arb. unit)$ {z_1} $ $ {z_2} $ 1 5 12 1 –1 1 –1 –3 1 –1 3 38813.91 2 5 16.33 1 –1 1 –1 –1 –1 3 1 43767.25 3 5 20.67 1 –1 1 –1 1 –1 –3 –1 39883.01 4 5 25 1 –1 1 –1 3 1 1 –3 34969.53 5 7.33 12 1 0 –2 3 –3 1 –1 0 49578.38 6 7.33 16.33 1 0 –2 3 –1 –1 3 0 62691.10 7 7.33 20.67 1 0 –2 3 1 –1 –3 0 56730.83 8 7.33 25 1 0 –2 3 3 1 1 0 49814.24 9 9.67 12 1 1 1 –3 –3 1 –1 –3 39812.41 10 9.67 16.33 1 1 1 –3 –1 –1 3 –1 52462.51 11 9.67 20.67 1 1 1 –3 1 –1 –3 1 50272.68 12 9.67 25 1 1 1 –3 3 1 1 3 38264.82 13 12 12 1 3 1 1 –3 1 –1 3 54874.82 14 12 16.33 1 3 1 1 –1 –1 3 –9 56897.90 15 12 20.67 1 3 1 1 1 –1 –3 3 50154.07 16 12 25 1 3 1 1 3 1 1 9 48139.09 17 7.33 16.33 — — — — — — — — 61723.89 18 7.33 16.33 — — — — — — — — 58839.98 19 7.33 16.33 — — — — — — — — 64899.02 20 7.33 16.33 — — — — — — — — 63139.10 计算
项目偏差平方和 自由度 $ {F}_{比} $ 显著性
α$ {S}_{回} $ 4995616451.05 5 10.72 0.01 $ {S_{\text{R}}} $ 652160821.93 7 ${S_{\rm{lf}} }$ 230690012.89 3 0.73 0.01 ${S_{\text{e} } }$ 421470809.04 4 $ {S}_{总} $ 5647777272.99 12 计算
项目偏差平方和 自由度 ${{F} }_{\text{比} }$ 显著性 $ \text{α} $ $ {S}_{回} $ 900041174.40 7 12.06 0.01 $ {S_{\text{R}}} $ 85273837.77 8 ${S_{\rm e } }$ 20165233.95 3 0.38 0.01 $ {S}_{总} $ 985315012.10 15 $ {\widehat y_0} $ 61434.84 $ {\overline y _0} $ 63027.40 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
计量
- 文章访问数:4080
- PDF下载量:52
- 被引次数:0