搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    季阳, 陈美玲, 黄汛, 吴永政, 兰冰

    Simulation of random photon loss in boson sampling of different optical networks

    Ji Yang, Chen Mei-Ling, Huang Xun, Wu Yong-Zheng, Lan Bing
    PDF
    HTML
    导出引用
    • 玻色采样机是最有可能真正意义上实现量子优势的专用量子计算机之一, 其在量子化学等领域也有着很好的应用前景. 然而, 光子损失相关的噪声会引起玻色采样样本的误差. 为了研究光子损失对玻色采样的影响, 基于等效分束器原理, 对玻色采样展开经典的模拟研究. 对于对应任意幺正矩阵的两种光学网络, 当在每一个光学单元中有一定概率发生光子损失时, 发现具有Clements结构光学网络的玻色采样相比于Reck结构的样本误差更小. 进一步地, 当光子损失的概率符合正态分布时, 发现若光子损失概率平均值不变, 标准差越大, 玻色采样的样本误差越大. 最后, 考虑输出光子数的实验结果表明, 随着光子损失概率的提高, 无光子损失的输出组合比例急剧下降, 说明光子损失会明显影响玻色采样的量子优势. 随机光子损失的玻色采样模拟研究有助于玻色采样实验的开展, 为含噪声量子计算研究提供思路.
      Boson sampling is a candidate for quantum protocols to truly realize the quantum computation advantage and to be used in advanced fields where complex computations are needed, such as quantum chemistry. However, this proposal is hard to achieve due to the existence of noise sources such as photon losses. In order to quantificationally analyze the influences of photon losses in optical networks, boson sampling is classically simulated based on the equivalent beam splitter mechanism, where the photon loss happening in optical units is equivalent to the photon transmission into the environmental paths through a virtual beam splitter. In our simulation, networks corresponding to random unitary matrices are made up, considering both the Reck structure and the Clements structure. The photon loss probability in an optical unit is well controlled by adjusting the parameters of the virtual beam splitter. Therefore, to simulate boson sampling with photon losses in optical networks is actually to simulate ideal boson sampling with more modes. It is found that when the photon loss probability is constant, boson sampling with Clements structures distinctly performs much better than that with Reck structures. Furthermore, the photon loss probability is also set to follow the normal distribution, which is thought to be closer to the situation in reality. It is found that when the mean value of photon loss probability is constant, for both network structures, errors of outputs become more obvious with the increase of standard deviation. It can be inferred that the increase of error rate can be explained by the network depth and the conclusion is suitable for larger-scale boson sampling. Finally, the number of output photons is taken into consideration, which is directly related to the classical computation complexity. It is found that with the photon loss probability, the ratio of output combinations without photon losses decreases sharply, implying that photon losses can obviously affect the quantum computation advantage of boson sampling. Our results indicate that photon losses can result in serious errors for boson sampling, even with a stable network structure such as that of Clements. This work is helpful for boson sampling experiments in reality and it is desired to develop a better protocol, for example, a well-designed network or excellent optical units, to well suppress photon losses.
          通信作者:陈美玲,cml13262283846@163.com
        • 基金项目:量子信息技术上海市市级科技重大专项子项目(批准号: 2019SHZDZX01-ZX03)、 中国电子科技集团公司发展部“量子计算与模拟技术研究”项目(批准号: GQ201173-00)和中国电子科技集团公司第三十二研究所“量子计算的实用化应用研究”项目(批准号: GY200906-00)
          Corresponding author:Chen Mei-Ling,cml13262283846@163.com
        • Funds:Project supported by the sub-project of Science and Technology Major Project of the Ministry of Science and Technology of Shanghai (Grant No. 2019SHZDZX01-ZX03), the project of “Quantum Computing and Simulation Technology Research” of the development department of China Electronics Technology Group Corporation (Grant No. GQ201173-00), and the project of “Practical Application Research of Quantum Computing” of the 32nd Research Institute of China Electronics Technology Group Corporation (Grant No. GY200906-00).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

      • 算法1 任意幺正矩阵符合Reck结构的分解算法[20]
        输入 任意幺正矩阵U
        输出 符合Reck结构的矩阵列表M_list
        1:M_list ← $\phi$ //初始化M_list 为空集
        2:fork← 1 to (m– 1)do //mU的维数
        3:fort← 0 to (k– 1)do
        4:  ω← arctan(|um–t,k–t/um–t,k–t+1|) //计算分束器参数ω,uU中元素, 下标分别表示u所在的行数和列数
        5:  temp ← (um–t,k–t/um–t,k–t+1)cotω //计算临时变量temp
        6:  φ← arctan(Imag(temp)/Real(temp)) //计算相移器参数φ, Imag和Real分别表示temp的虚部和实部
        7:  if|um–t,k–t+1sinω –eiφum–t,k–tcosω|≠ 0then
        8:   ω–ω //修正ω符号, 使得步骤10的消元能够顺利进行
        9:  M← OpticalUnit(m,k – t,k – t+ 1,ω,φ) 
           //利用(1)式计算m维光学单元矩阵, 其中分束器所在通道数为(kt)和(kt+ 1), 相移器所在通道数为(kt)
        10:M_list ← (M_list,M),UUM–1 //对矩阵U进行消元
        11:end for
        12:end for
        13:M_list(M_list,U) //将消元后得到的对角矩阵放入M_list
        14:M_list←Reverse(M_list) //反向排列M_list, 使得M_list中所有元素乘积为待分解矩阵
        下载: 导出CSV
        算法2 任意幺正矩阵符合Clements结构的分解算法[19]
        输入 任意幺正矩阵U
        输出 符合Clements结构的矩阵列表M_list
        1:M_list ←M_list1M_list2M_list3ω_list←$\phi$
          //初始化M_ list 为空集, 并初始化辅助集合M_list1,M_ list2,M_list3以及ω_list 为空集
        2:fork← 1 to (m– 1)do //mU的维数
        3: fort← 0 to (k– 1)do
        4:  ifkmod 2 ≠ 0then
        5:   Compute(ω,φ) //根据算法1计算ω,φ
        6:   M← OpticalUnit(m,kt,kt+ 1,ω,φ)
        7:   M_list1← (M_list1,M),UUM–1 //若k为奇数, 则利用M–1右乘U, 对U进行消元
        8:  else
        9:    ω← –arctan(|umk+t+1,t+1/umk+t,t+1|)
        10:    temp ← –(umk+t+1,t+1/umk+t,t+1)cotω
        11:  φ← arctan(Imag(temp)/Real(temp))
        12:   if|umk+t+1,t+1cosω+ eiφumk+t,t+1sinω| ≠ 0then
        13:     ω← –ω //修正ω符号, 使得步骤15的消元能够顺利进行
        14:  M← OpticalUnit(m,mk+t,mk+t+ 1,ω,φ)
        15:  ω_ list(ω_list ,ω),M_list2(M_list2,M),UMU //若k为偶数, 则利用M左乘U, 对U进行消元
        16: end for
        17:end for
        18:ω_list←Reverse(ω_list ),M_list2←Reverse(M_list2),DU,p← 1
          //U经过消元变换为对角矩阵D, 待分解矩阵可以表示为形如M–1M–1···M–1DMM···M的形式
        19:fork← (m– 1) to 1 by –1do
        20: fort← (k– 1) to 0 by –1do
        21:  ifkmod 2 = 0then
        22:  ω ←|ωp| //计算M'的分束器参数ω,ωpω_list的第p个元素
        23:   temp ← –tanωcotωpdmk+t/dmk+t+1 //d表示D的对角元素, 下标表示d所在行(列)数
        24:  φ← arctan(Imag(temp)/Real(temp)) //计算M'的相移器参数φ
        25:  if|dmk+tsinωp+ eiφdmk+t+1cosωp| ≠ 0then
        26:     ω ← –ω //修正ω符号
        27:     Compute(φ) //在得到修正的ω后, 根据步骤23和24计算φ, 使得$ \boldsymbol D' \boldsymbol M'= \boldsymbol M_p^{-1} \boldsymbol D $, 其中MpM_list2的第p个元素
        28:  MM'← OpticalUnit(m,mk+t,mk+t+ 1,ω,φ) //计算M'并赋值给M
        29:  M_list3(M_list3,M),$ \boldsymbol D← \boldsymbol D'← \boldsymbol M_p^{-1} \boldsymbol D \boldsymbol M^{-1} $ ,pp+ 1 //计算D'并赋值给D
        30: end for
        31:end for
        32:M_list3←(M_list3,D) //将对角矩阵放入M_list3
        33:M_list1←Reverse(M_list1),M_list3←Reverse(M_list3)
        34:M_list←(M_list3,M_list1) //M_list中所有元素乘积为待分解矩阵
        下载: 导出CSV
        算法3 考虑光子损失的玻色采样输出组合概率算法
        输入 输入组合S, 输出组合T,m维光学网络矩阵U, 单条实际光路在单个光学单元处的光子损失概率Ploss
        输出 输出组合概率P out
        1:M_list ← Decompose(U) //按照Reck或Clements结构分解矩阵U
        2:AM1$\oplus $Em(m1),M1M_list //将对角矩阵的维度扩展为m2
        3:fork← 2 to (m(m– 1)/2 + 1)do
        4: MkMk$\oplus $Em(m– 1) , MkM_ list //将光学单元矩阵的维度扩展为m2
        5: ω← arccos(1 – (1 –Ploss)1/2) //计算虚构分束器参数ω
        6: Compute(ch) //确定原始光学单元所在通道数ch和(ch+ 1)
        7: B← OpticalUnit(m2,ch,m+ 2k– 3,ω, 0),B'← OpticalUnit(m2,ch+ 1,m+ 2k– 2,ω, 0)
           //构造单个光学单元中的2个虚构分束器矩阵
        8: AAMkBB'//构造考虑光子损失的等效光学网络矩阵
        9:end for
        10:S← (S, [0]m(m–1)) //将输入组合维度变为m2
        11:Pout← ∑T'| Perm(AS, (T,T'))|2,T' ∈{0, 1}m(m–1) //Perm()表示矩阵积和式函数,T'中所有元素之和为损失光子数
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

      • [1] 杨晓堃, 李维, 黄永畅.量子博弈—“PQ”问题. 必威体育下载 , 2024, 73(3): 030301.doi:10.7498/aps.73.20230592
        [2] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才.基于微尺度光学偶极阱的一维单原子阵列的实验制备. 必威体育下载 , 2024, 73(10): 103701.doi:10.7498/aps.73.20240135
        [3] 吴宇恺, 段路明.离子阱量子计算规模化的研究进展. 必威体育下载 , 2023, 72(23): 230302.doi:10.7498/aps.72.20231128
        [4] 范桁.量子计算纠错取得突破性进展. 必威体育下载 , 2023, 72(7): 070303.doi:10.7498/aps.72.20230330
        [5] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明.面向量子计算的拓扑超导体材料、物理和器件研究. 必威体育下载 , 2022, 71(16): 160302.doi:10.7498/aps.71.20220596
        [6] 王美红, 郝树宏, 秦忠忠, 苏晓龙.连续变量量子计算和量子纠错研究进展. 必威体育下载 , 2022, 71(16): 160305.doi:10.7498/aps.71.20220635
        [7] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿.量子计算与量子模拟中离子阱结构研究进展. 必威体育下载 , 2022, 71(13): 133701.doi:10.7498/aps.71.20220224
        [8] 王宁, 王保传, 郭国平.硅基半导体量子计算研究进展. 必威体育下载 , 2022, 71(23): 230301.doi:10.7498/aps.71.20221900
        [9] 周宗权.量子存储式量子计算机与无噪声光子回波. 必威体育下载 , 2022, 71(7): 070305.doi:10.7498/aps.71.20212245
        [10] 张结印, 高飞, 张建军.硅和锗量子计算材料研究进展. 必威体育下载 , 2021, 70(21): 217802.doi:10.7498/aps.70.20211492
        [11] 张诗豪, 张向东, 李绿周.基于测量的量子计算研究进展. 必威体育下载 , 2021, 70(21): 210301.doi:10.7498/aps.70.20210923
        [12] 黎颖, 韩泽尧, 黎超健, 吕劲, 袁骁, 吴步娇.关于采样问题的量子优越性综述. 必威体育下载 , 2021, 70(21): 210201.doi:10.7498/aps.70.20211428
        [13] 何映萍, 洪健松, 刘雄军.马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 必威体育下载 , 2020, 69(11): 110302.doi:10.7498/aps.69.20200812
        [14] 田宇玲, 冯田峰, 周晓祺.基于冗余图态的多人协作量子计算. 必威体育下载 , 2019, 68(11): 110302.doi:10.7498/aps.68.20190142
        [15] 赵士平, 刘玉玺, 郑东宁.新型超导量子比特及量子物理问题的研究. 必威体育下载 , 2018, 67(22): 228501.doi:10.7498/aps.67.20180845
        [16] 范桁.量子计算与量子模拟. 必威体育下载 , 2018, 67(12): 120301.doi:10.7498/aps.67.20180710
        [17] 赵娜, 刘建设, 李铁夫, 陈炜.超导量子比特的耦合研究进展. 必威体育下载 , 2013, 62(1): 010301.doi:10.7498/aps.62.010301
        [18] 李盼池, 王海英, 戴庆, 肖红.量子过程神经网络模型算法及应用. 必威体育下载 , 2012, 61(16): 160303.doi:10.7498/aps.61.160303
        [19] 叶 宾, 须文波, 顾斌杰.量子Harper模型的量子计算鲁棒性与耗散退相干. 必威体育下载 , 2008, 57(2): 689-695.doi:10.7498/aps.57.689
        [20] 叶 宾, 谷瑞军, 须文波.周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 必威体育下载 , 2007, 56(7): 3709-3718.doi:10.7498/aps.56.3709
      计量
      • 文章访问数:3599
      • PDF下载量:51
      • 被引次数:0
      出版历程
      • 收稿日期:2022-02-25
      • 修回日期:2022-06-06
      • 上网日期:2022-09-16
      • 刊出日期:2022-10-05

        返回文章
        返回
          Baidu
          map