-
首先介绍了单次发送单光子的量子安全直接通信方案的具体步骤. 基于该方案的基本步骤, 逐步扩展到分两次和分四次发送单光子序列的量子安全直接通信方案, 重点介绍各方案对应的编码规则. 分析上述方案的效率可以看出, 发送次数的增加可以增加单光子的分类, 大大提高每个单光子的编码容量和整个通信中量子态的传输效率. 最后提出有通用性的分 n( n为2的整数次幂)次发送单光子来进行量子安全直接通信的方案及其编码规则, 经过安全性分析证明方案安全可行. 通过效率分析, 该方案比现有方案的通信效率更高, 而且该方案的实施只用到单光子, 不涉及量子纠缠, 实现难度更小.In this work, we first introduce the specific steps of a quantum-secure direct communication scheme that sends a single photon at a time. Based on the basic steps of the scheme, it is gradually extended to a quantum secure direct communication scheme that transmits single-photon sequences twice and four times, with emphasis on the coding rules corresponding to each scheme. The purpose is that through the above scheme, it can be intuitively seen in the subsequent efficiency analysis that with the increase of the number of transmissions, the classification of single photons can be increased, and the encoding capacity of each single photon and the transmission efficiency of quantum states in the entire communication can be greatly improved. Finally, a universal scheme and coding rules for quantum secure direct communication by sending single photons in an integer power of 2 are proposed, and after security analysis the scheme proves to be safe and feasible. Through the efficiency analysis, the communication efficiency of this scheme is higher than that of the existing scheme, and the implementation of this scheme only uses a single photon, does not involve with quantum entanglement, and this scheme has more application values.
-
Keywords:
- single photon/
- multiple sending/
- encoding rules/
- efficiency analysis
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] -
信息序列 量子态 信息序列 量子态 00 $ \left| 0 \right\rangle $ 10 $ \left| + \right\rangle $ 11 $ \left| 1 \right\rangle $ 01 $ \left| - \right\rangle $ 信息序列 量子态 信息序列 量子态 000 $ \left| {{0_1}} \right\rangle $ 001 $ \left| {{0_2}} \right\rangle $ 111 $ \left| {{1_1}} \right\rangle $ 110 $ \left| {{1_2}} \right\rangle $ 011 $ \left| {{ + _1}} \right\rangle $ 010 $ \left| {{ + _2}} \right\rangle $ 100 $ \left| {{ - _1}} \right\rangle $ 101 $ \left| {{ - _2}} \right\rangle $ 信息序列 量子态 信息序列 量子态 0000 $ \left| {{0_1}} \right\rangle $ 1000 $ \left| {{0_3}} \right\rangle $ 1111 $ \left| {{1_1}} \right\rangle $ 0111 $ \left| {{1_3}} \right\rangle $ 0001 $ \left| {{ + _1}} \right\rangle $ 0011 $ \left| {{ + _3}} \right\rangle $ 1110 $ \left| {{ - _1}} \right\rangle $ 1100 $ \left| {{ - _3}} \right\rangle $ 0010 $ \left| {{0_2}} \right\rangle $ 0101 $ \left| {{0_4}} \right\rangle $ 1101 $ \left| {{1_2}} \right\rangle $ 1010 $ \left| {{1_4}} \right\rangle $ 0100 $ \left| {{ + _2}} \right\rangle $ 1001 $ \left| {{ + _4}} \right\rangle $ 1011 $ \left| {{ - _2}} \right\rangle $ 0110 $ \left| {{ - _4}} \right\rangle $ 信息序列 量子态 $ \cdots $ 信息序列 量子态 $ \overbrace {0 \cdots 0}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{0_1}} \right\rangle $ $ \cdots $ $ \overbrace {0 \cdots 10}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{0_n}} \right\rangle $ $ \overbrace {1 \cdots 1}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{1_1}} \right\rangle $ $ \cdots $ $ \overbrace {1 \cdots 01}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{1_n}} \right\rangle $ $ \overbrace {0 \cdots 1}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{ + _1}} \right\rangle $ $ \cdots $ $ \overbrace {0 \cdots 11}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{ + _n}} \right\rangle $ $ \overbrace {1 \cdots 0}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{ - _1}} \right\rangle $ $ \cdots $ $ \overbrace {1 \cdots 00}^{{{\log }_2}\left( {4 n} \right)} $ $ \left| {{ - _n}} \right\rangle $ QSDC通信协议 传输
效率量子比特率 编码容量 邓富国Two-Step[11] 1 1 1 qubit: 2 bit 权东晓基于单光子单向[12] 0.5 1 1 qubit: 1 bit 曹正文基于单光子与Bell态结合[13] 2 1 1 qubit: 3 bit 基于单光子与GHZ态结合[16] 2 1 1 qubit: 4 bit 基于单光子与n粒子GHZ态结合[17] 2 1 1 qubit: (1+n)bit 王剑基于纠缠交换[18] 1 1 1 qubit: 2 bit 单次发送单光子 2 1 1 qubit: 2 bit 分两次发送单光子 3 1 1 qubit: 3 bit 分4次发送单光子 4 1 1 qubit: 4 bit 分n(n是2的整数次幂)次
发送单光子$ {\text{lo}}{{\text{g}}_2}\left( {4 n} \right) $ 1 1 qubit:
$ {\text{lo}}{{\text{g}}_2}\left( {4 n} \right) $bit -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
计量
- 文章访问数:3724
- PDF下载量:72
- 被引次数:0