-
采用考虑Davidson修正的多参考组态相互作用(MRCI+Q)方法, 计算了氮气分子
${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$ 和 b 1П u电子态的势能曲线、偶极跃迁矩阵元、光谱常数和振动能级, 计算结果与其他实验和理论数据符合较好. 基于分子结构数据, 研究了氮气分子在100 atm (1 atm = 1.01×10 5Pa)压强下, 295—20000 K温度范围内的不透明度. 结果表明, 在波长分布范围内, 不透明度随着温度的升高而变大; 当温度小于5000 K时, 不透明度主要分布在紫外区域, 当温度大于10000 K时, 激发态的贡献使得不透明度在红外区域也开始有明显的布居. 本文探明了温度效应对氮气分子不透明度的影响, 可以为天体物理和核武器领域提供理论和数据支持.Multi-reference configuration interaction (MRCI) approach with Davison size-extensivity correction (+Q) is employed to calculate the potential curves and dipole moments of${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$ and$b{}^1{\Pi _{\rm u}}$ electronic states of N 2. The spectroscopic constants and vibrational level spaceings are calculated and in excellent agreement with the available theoretical results and experimental data. Based on the calculated molecular structure parameters, the opacities of N 2in a temperature range of 295–20000 K under a pressure of 100 atm (1 atm = 1.01×10 5Pa) are presented. The results demonstrate that the wavelength range of absorption cross sections are enlarged with the temperature increasing. Moreover, the cross sections are mainly dominated in the range of ultraviolet for the cases with temperature T< 5000 K, while the obvious population can be found in the infrared ranges for the cases with temperature T> 10000 K due to the contribution of the excited states. The influence of temperature on the opacities of nitrogen molecule are investigated in the present work, which can provide theoretical and data support for researches of astrophysics and nuclear weapons.-
Keywords:
- nitrogen molecule/
- spectroscopic constants/
- opacities
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] -
State Method Te/cm–1 ωe/cm–1 ωexe/cm–1 Be/cm–1 Re/Å De/eV ${X^1}\Sigma _{\rm{g}}^ + $ Present 0 2357.1168 14.3883 1.9968 1.0985 9.8396 MR-AQCC[48] 0 2337 1.1019 9.6426 MR-CISD[48] 0 2342 1.1016 9.6468 MR-CISD+Q[48] 0 2335 1.1019 9.6489 DFT(et-QZ3P-2D)[49] 0 2356 14.3 1.986 1.1012 DFT(ATZP)[49] 0 2346 13.3 1.974 1.1045 CCSD(T)[50] 0 2342.8 14.091 1.983 1.1014 CCSD[50] 0 2356.1 13.972 1.987 1.1003 CASSCF[30] 0 2358 1.092 9.82 Expt.[20] 0 2358.57 14.324 1.99824 1.09768 9.7593 $a'{}^1\Sigma _{\rm u}^ -$ Present 68344.098 1528.4544 11.4479 1.4794 1.2755 6.1725 MR-AQCC[48] 67762 1514 1.2807 6.1230 MR-CISD[48] 68480 1517 1.2804 6.0915 MR-CISD+Q[48] 67531 1513 1.2808 6.1254 DFT(et-QZ3P-2D)[49] 64968.9 1468 9.71 1.450 1.2887 DFT(ATZP)[49] 64578.2 1471 11.1 1.446 1.2906 MRCI[28] 69032 1523.6 11.91 1.4725 1.278 CASSCF[30] 1572 1.277 5.81 Expt.[20] 67739 1530.27 12.1 1.4801 1.2754 6.1278 a1Пg Present 69486.425 1691.4017 13.6099 1.6135 1.2215 6.04016 MR-AQCC[48] 69086 1676 1.2266 5.9587 MR-CISD[48] 69566 1691 1.2261 5.9568 MR-CISD+Q[48] 68951 1670 1.2268 5.9617 DFT(et-QZ3P-2D)[49] 69078.0 1684 12.4 1.609 1.2236 DFT(ATZP)[49] 68910.6 1647 14.0 1.601 1.2264 MRCI[28] 69971 1687.5 13.91 1.6034 1.225 CASSCF[30] 1676 1.230 6.30 Expt.[20] 68951.2 1694.2 13.9 1.6170 1.2203 5.9775 b1Пu Present 102357.2 682.0947 –5.9531 1.3929 1.319 1.9599 MR-AQCC[48] 101244 607 1.3456 1.9742 MR-CISD[48] 102333 632 1.3482 1.8942 MR-CISD+Q[48] 101018 600 1.3489 1.9859 MRCI[26] 101703.8 681.1 –8.8 1.437 Expt.[20] 100817.5 2.0265 Expt.[51] 101675 634.8 1.448 1.284 v Present 8R RMR CCSD[52] MR-AQCC[52] MR-ACPF[53] Expt.[54] Expt.[55] 1 2327.5 2336.5 2330.41 2328.54 2329.9 2329.9 2 2299.4 2308.4 2301.81 2299.89 2301.3 2301.2 3 2270.5 2279.8 2273.14 2271.18 2272.5 2272.6 4 2242.0 2251.4 2244.47 2242.45 2243.8 2243.8 5 2213.1 2222.5 2215.74 2213.69 2215.1 2215.0 6 2184.4 2193.7 2186.98 2184.87 2186.2 2186.2 7 2155.6 2164.7 2158.17 2156.01 2157.4 2157.4 8 2126.6 2135.3 2129.31 2127.10 2128.4 2128.4 9 2097.6 2106.0 2100.40 2098.13 2099.5 2099.5 10 2068.7 2076.4 2071.43 2069.09 2070.4 2070.4 11 2039.6 2046.7 2042.39 2040.02 2041.4 2041.4 12 2010.3 2016.8 2013.29 2010.84 2012.1 2012.1 13 1981.1 1987.0 1984.10 1981.58 1982.9 1983.0 14 1951.7 1956.9 1954.83 1952.26 1953.6 1953.5 15 1922.2 1927.0 1925.43 1922.79 1924.1 1924.2 16 1892.7 1896.9 1895.96 1893.25 1894.6 1894.7 17 1863.1 1866.7 1866.31 1863.53 1864.9 1865.1 18 1833.6 1836.6 1836.55 1833.69 1835.0 1835.4 19 1803.8 1806.3 1806.60 1803.68 1805.0 1805.6 20 1773.6 1775.9 1774.6 1775.6 21 1743.3 1745.5 1744.1 1745.7 22 1712.7 1714.8 1713.3 1715.5 23 1681.8 1684.0 1682.1 1685.0 24 1650.5 1652.8 1650.5 1655.0 25 1618.8 1621.6 1618.4 1624.0 26 1586.5 1585.9 27 1553.8 1552.8 28 1520.8 1519.0 29 1487.3 1484.7 30 1453.2 v $ { {a} }'{}^1\Sigma _{ {\rm u} }^ - $ a1Пg b1Пu Present Expt.[20] Present Expt.[20] Present Expt.[20] 1 1506.7 1506.24 1664.6 1666.34 645.2 645.4 2 1482.8 1482.45 1637.6 1638.51 710.9 705.3 3 1459.3 1458.90 1609.6 1610.77 745.2 747.6 4 1436.0 1435.57 1581.8 1583.07 763.7 774.8 5 1412.8 1412.47 1554.5 1555.46 772.9 789.6 6 1389.8 1389.58 1527.3 1527.93 776.4 794.4 7 1367.4 1366.88 1500.1 1500.49 774.8 791.4 8 1345.0 1344.41 1473.3 1473.15 770.5 782.8 9 1322.8 1322.10 1446.4 1445.91 762.7 770.2 10 1300.7 1300.00 1419.7 1418.77 752.4 754.8 11 1278.8 1278.06 1393.1 1391.77 740.2 737.9 12 1257.1 1256.31 1366.6 1364.87 725.2 719.8 13 1235.8 1234.70 1340.3 1338.12 708.4 701.0 14 1214.5 1213.27 1314.2 1311.50 689.0 681.4 15 1193.1 1191.98 1288.2 1285.03 667.1 660.5 16 1172.0 1170.84 1262.1 642.1 637.9 17 1151.2 1149.83 1236.4 613.4 612.6 18 1130.4 1128.95 1210.9 580.3 584.0 19 1109.6 1108.19 1185.3 541.8 551.0 20 1088.8 1159.7 21 1068.1 1134.0 22 1047.5 1108.4 23 1026.9 1082.8 24 1006.2 1057.1 25 985.4 1031.2 26 964.5 1005.0 27 943.4 978.4 28 922.3 951.4 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55]
计量
- 文章访问数:3588
- PDF下载量:63
- 被引次数:0