搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆

Line identification of extreme ultraviolet spectra of Mo V to Mo XVIII in EAST tokamak

Zhang Wen-Min, Zhang Ling, Cheng Yun-Xin, Wang Zheng-Xiong, Hu Ai-Lan, Duan Yan-Min, Zhou Tian-Fu, Liu Hai-Qing
PDF
HTML
导出引用
  • 磁约束聚变等离子体中高 Z杂质的存在给等离子体的约束状态带来不同程度的影响. EAST装置第一壁是钼瓦, 不可避免地, 等离子体与壁相互作用会使钼进入等离子体成为高 Z杂质. 本文利用EAST托卡马克装置快速极紫外杂质谱仪系统实现了对5—500 Å (1 Å = 0.1 nm)波段范围内杂质线光谱进行同时监测. 结合EAST等离子体低、中 Z杂质的特征谱线对波长进行原位标定, 基于NIST数据库和已有实验数据进行对比, 并利用归一化谱线强度随时间演化行为, 对较低电子温度( T e0= 1.5 keV)等离子体中5—485 Å波段范围内由瞬态钼杂质溅射产生的钼光谱进行了系统性识别. 在15—30 Å和65—95 Å波段范围观测到分别由电离态Mo 19+-Mo 24+(Mo XX-Mo XXV), Mo 16+-Mo 29+(Mo XVII-Mo XXX)组成的未分辨跃迁系. 而且在EAST上观测并识别出27—60 Å和120—485 Å波段范围内低价钼离子(Mo 4+-Mo 17+)的多条谱线(Mo V-Mo XVIII). 这些谱线包含多条强度较强且独立的禁戒线和共振线, 例如Mo XII(329.414 Å, 336.639 Å, 381.125 Å), Mo XIII (340.909 Å, 352.994 Å), Mo XIV(373.647 Å, 423.576 Å), Mo XV(50.448 Å, 57.927 Å, 58.832 Å); 还观测到27—32 Å波段范围内6条新的钼谱线, 即(27.21 ± 0.01) Å, (27.37 ± 0.01) Å, (28.99 ± 0.01) Å, (30.81 ± 0.01) Å, (31.54 ± 0.01) Å, (31.83 ± 0.01) Å, 并推断这6条谱线可能是Mo XV-Mo XVIII谱线. 同时确定了12条用于杂质输运物理研究的谱线. 这些谱线的识别不仅丰富了钼原子数据库, 还为EAST托卡马克开展高 Z杂质行为以及输运物理的研究提供了坚实基础.
    The presence of high- Zimpurities in magnetically confined fusion devices has different influences on the confinement property of the plasma due to the high cooling rate of high- Zimpurities. The first wall of EAST is equipped with molybdenum tiles, molybdenum particles sputtered from inevitable plasma-wall interaction enter into the plasma and become high- Zimpurity. In this paper, four fast-time-response extreme ultraviolet (EUV) spectrometers, a system which is upgraded in the EAST 2021 campaign, are used to monitor the line emission from impurity ions in the 5–500 Å wavelength range simultaneously. The in-situ wavelength calibration is carried out accurately using several well-known emission lines of low- and medium-Z impurity ions. The observed spectral lines are carefully identified based on the National Institute of Standards Technology (NIST) database, previously published experimental data and the time evolution of the normalized line intensity of emission lines from impurity ions. At the lower electron temperature ( T e0= 1.5 keV), the EUV spectra emitted from molybdenum ions in the range of 5–485 Å are systematically identified in EAST discharges accompanied with spontaneous sputtering events. As a result, two unresolved transition arrays of molybdenum spectra composed of Mo 19+-Mo 24+(Mo XX-Mo XXV) and Mo 16+-Mo 29+(Mo XVII-Mo XXX) are observed in the ranges of 15–30 Å and 65–95 Å. In addition, several spectral lines of lower molybdenum ions of Mo 4+-Mo 17+(Mo V-Mo XVIII) in the ranges of 27–60 Å and 120–485 Å are observed and identified on EAST for the first time, including a few strong and isolated forbidden and resonant lines, e.g. Mo XII at 329.414 Å, 336.639 Å and 381.125 Å, Mo XIII at 340.909 Å and 352.994 Å, Mo XIV at 373.647 Å and 423.576 Å, Mo XV at 50.448 Å, 57.927 Å and 58.832 Å. Six spectral lines are newly observed in the range of 27–32 Å, i.e. (27.21 ± 0.01) Å, (27.37 ± 0.01) Å, (28.99 ± 0.01) Å, (30.81 ± 0.01) Å, (31.54 ± 0.01) Å and (31.83 ± 0.01) Å, which may be Mo XV-Mo XVIII spectral lines. As a result, twelve strong and isolated spectral lines are chosen in routine observation for impurity transport physical study. The identification of these spectral lines not only enriches the molybdenum atom database, but also provides a solid experimental data base for magnetically confined devices to study the behavior and transport in core and edge plasmas of high-Z impurity.
        通信作者:张凌,zhangling@ipp.ac.cn; 王正汹,zxwang@dlut.edu.cn;
      • 基金项目:国家磁约束核聚变能发展研究专项(批准号: 2022YFE03180400)、国家自然科学基金(批准号: 11925501)和国家重点研发计划(批准号: 2018YFE0311100, 2019YFE030403)资助的课题
        Corresponding author:Zhang Ling,zhangling@ipp.ac.cn; Wang Zheng-Xiong,zxwang@dlut.edu.cn;
      • Funds:Project supported by the National MCF Energy R&D Program, China (Grant No. 2022YFE03180400 ), the National Natural Science Foundation of China (Grant No. 11925501), and the National Key Research and Development Program of China (Grant Nos. 2018YFE0311100, 2019YFE030403)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

    • 谱线 离子 电离能/eV 波长/Å 跃迁能级
      实验值 参考值
      Mo V Mo4+ 54.42 258.09 ± 0.03 258.069 4p54d33→ 4p64d21D2
      324.98 ± 0.02 324.979 4p64d5f34→ 4p64d23F4
      327.13 ± 0.01 327.167 4p54d33→ 4p64d23P2
      Mo VI Mo5+ 68.83 227.75 ± 0.04 227.801 4p5(2P°)4d(3F)5s25/2→4p64d2D5/2
      229.20 ± 0.04 229.262 4p66f25/2→4p64d2D3/2
      Mo VII Mo6+ 125.64 151.85 ± 0.04 151.747 4s24p5(23/2)5d2[1/2] °1→ 4s24p61S0
      235.66 ± 0.05 235.694 4s24p5(23/2)5f2[3/2]1→ 4s24p5(21/2)4d2[3/2]°2
      Mo VIII Mo7+ 143.6 133.18 ± 0.03 133.168 4s24p4(3P)5d2P3/2→4s24p523/2
      134.34 ± 0.03 134.362 4s24p4(3P)5d4F5/2→4s24p523/2
      136.83 ± 0.03 136.782 4s24p4(3P)5d2D3/2→4s24p523/2
      Mo IX Mo8+ 164.12 132.03 ± 0.03 132.077 4s24p3(2P°)5d31→4s24p41S0
      158.53 ± 0.03 158.641 4s24p3(21/2)5s (1/2, 1/2)°1→4s24p43P2
      176.67 ± 0.04 176.682 4s24p3(23/2)5s (3/2, 1/2)°2→4s24p41D2
      231.90 ± 0.05 231.991 4s24p3(2D°)4d13→4s24p4 1D2
      237.76 ± 0.05 237.843 4s24p3(2D°)4d12→4s24p4 1D2
      Mo X Mo9+ 186.3 152.54 ± 0.04 152.683 4s24p2(3P)5s4P3/2→4s24p343/2
      157.65 ± 0.04 157.624 4s24p2(3P)5s2P3/2→4s24p325/2
      159.07 ± 0.04 159.049 4s24p2(3P)5s4P5/2→4s24p325/2
      159.42 ± 0.04 159.219 4s24p2(3P)5s4P3/2→4s24p323/2
      231.07 ± 0.04 231.110 4s24p2(1D)4d2F7/2→4s24p325/2
      239.03 ± 0.06 239.017 4s24p2(1S)4d2D5/2→4s24p323/2
      243.05 ± 0.06 243.071 4s24p2(1D)4d2D3/2→4s24p325/2
      Mo XI Mo10+ 209.3 146.65 ± 0.04 146.641 4s24p (21/2)5s (1/2, 1/2)°1→4s24p23P2
      322.12 ± 0.04 322.158 4s4p311→ 4s24p21D2
      Mo XII Mo11+ 230.28 131.37 ± 0.03 131.394 4s25s2S1/2→4s24p21/2
      250.09 ± 0.06 250.112 4s24d2D5/2→4s24p23/2
      329.53 ± 0.01 329.414 4s4p22P3/2→4s24p23/2
      336.51 ± 0.01 336.639 4s4p22P1/2→4s24p23/2
      381.13 ± 0.06 381.125 4s4p22D3/2→4s24p21/2
      Mo XIII Mo12+ 279.1 53.56 ± 0.02 53.551 3d94s24p31→3d104s21S0
      54.12 ± 0.02 54.101 3d94s24p11→3d104s21S0
      340.88 ± 0.01 340.909 3d104s4p11→3d104s21S0
      352.87 ± 0.03 352.994 3d104p23P1→3d104s4p30
      Mo XIV Mo13+ 302.6 51.98 ± 0.02 52.000 3d9(2D)4p2(3P)2P1/2→3d104p23/2
      52.77 ± 0.02 52.753 3d9(2D)4s4p (3P°)23/2→3d104s2S1/2
      121.68 ± 0.02 121.647 3d105s2S1/2→3d104p23/2
      241.78 ± 0.06 241.609 3d104d2D3/2→3d104p21/2
      373.55 ± 0.05 373.647 3d104p23/2→3d104s2S1/2
      423.57 ± 0.07 423.576 3d104p21/2→3d104s2S1/2
      Mo XV Mo14+ 544 29.48 ± 0.01 29.458 3d95f11→3d10 1S0
      29.81 ± 0.01 29.774 3d95f31→3d10 1S0
      35.39 ± 0.01 35.368 3d94f11→3d10 1S0
      50.43 ± 0.02 50.448 3d9(2D5/2)4p (5/2, 3/2)°1→3d101S0
      58.04 ± 0.04 57.927 3d9(2D3/2)4s (3/2, 1/2)2→3d101S0
      58.86 ± 0.04 58.832 3d9(2D5/2)4s (5/2, 1/2)2→3d101S0
      347.47 ± 0.05 347.339 3d9(2D5/2)4p (5/2, 3/2)°3→3d9(2D5/2)4s (5/2, 1/2)3
      365.77 ± 0.04 365.924 3d9(2D5/2)4p (5/2, 3/2)4→3d9(2D5/2)4s (5/2, 1/2)3
      Mo XVI Mo15+ 591 32.92 ± 0.05 32.916 3p63d8(1G4)4f2[1]°3/2→3p63d92D5/2
      34.03 ± 0.01 33.992 3p63d8(3F2)4f2[1]°3/2→3p63d92D3/2
      54.46 ± 0.03 54.348 3p63d8(3F4)4s (4, 1/2)9/2→3p63d92D5/2
      Mo XVIII Mo17+ 702 38.81 ± 0.01 38.700a 3d64p→3d7
      a数据来源于文献[18], 其他数据来源于NIST数据库[25], 粗体表示可用于杂质诊断的谱线.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

    • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏.HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 必威体育下载 , 2024, 73(8): 088901.doi:10.7498/aps.73.20231749
      [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐.钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 必威体育下载 , 2024, 73(18): 1-10.doi:10.7498/aps.73.20240730
      [3] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆.EAST托卡马克钨杂质上下不对称性分布的实验研究. 必威体育下载 , 2024, 73(3): 035201.doi:10.7498/aps.73.20231448
      [4] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群.EAST托卡马克上共振磁扰动对锯齿行为的影响. 必威体育下载 , 2023, 72(13): 135203.doi:10.7498/aps.72.20230347
      [5] 王福琼, 徐颖峰, 查学军, 钟方川.托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 必威体育下载 , 2023, 72(21): 215213.doi:10.7498/aps.72.20230991
      [6] 沈勇, 董家齐, 徐红兵.托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 必威体育下载 , 2018, 67(19): 195203.doi:10.7498/aps.67.20180703
      [7] 杨增强, 张力达.红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 必威体育下载 , 2015, 64(13): 133203.doi:10.7498/aps.64.133203
      [8] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆.中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 必威体育下载 , 2014, 63(12): 125203.doi:10.7498/aps.63.125203
      [9] 李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银.EAST超导托卡马克装置真空室壁处理的研究. 必威体育下载 , 2012, 61(20): 205203.doi:10.7498/aps.61.205203
      [10] 钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅.HL-2A托卡马克中性束辐射光谱的数值模拟. 必威体育下载 , 2010, 59(5): 3336-3343.doi:10.7498/aps.59.3336
      [11] 郑永真, 冯兴亚, 郑银甲, 郭干城, 徐德明, 邓中朝.用激光吹气注入高Z杂质使HL-1M托卡马克放电安全终止的研究. 必威体育下载 , 2005, 54(6): 2809-2813.doi:10.7498/aps.54.2809
      [12] 查学军, 朱思铮, 虞清泉.托卡马克极向场线圈的优化方法. 必威体育下载 , 2003, 52(2): 428-433.doi:10.7498/aps.52.428
      [13] 徐 伟, 万宝年, 谢纪康.HT-6M托卡马克装置杂质输运. 必威体育下载 , 2003, 52(8): 1970-1978.doi:10.7498/aps.52.1970
      [14] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年.HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 必威体育下载 , 2001, 50(10): 1956-1963.doi:10.7498/aps.50.1956
      [15] 刘才根, 钱尚介, 万华明.电子回旋波驱动的托卡马克芯部等离子体极向旋转. 必威体育下载 , 1998, 47(9): 1515-1519.doi:10.7498/aps.47.1515
      [16] 赵庆勋, 李赞良, 郑少白.CT-6B托卡马克等离子体角向转动的光谱测量. 必威体育下载 , 1997, 46(1): 94-100.doi:10.7498/aps.46.94
      [17] 刘胜侠.HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 必威体育下载 , 1995, 44(1): 152-156.doi:10.7498/aps.44.152
      [18] 李赞良, 王文书, 李文莱, 刘翔, 李孝昌.CT-6B托卡马克装置上电流上升阶段电子温度的光谱测量. 必威体育下载 , 1989, 38(4): 637-644.doi:10.7498/aps.38.637
      [19] 王文书, 李赞良, 黄矛.CT-6B托卡马克等离子体的真空紫外光谱. 必威体育下载 , 1987, 36(6): 712-716.doi:10.7498/aps.36.712
      [20] 王永昌, E. JANNITTI, G. TONDELLO.对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 必威体育下载 , 1985, 34(8): 1049-1055.doi:10.7498/aps.34.1049
    计量
    • 文章访问数:3707
    • PDF下载量:81
    • 被引次数:0
    出版历程
    • 收稿日期:2021-12-24
    • 修回日期:2022-01-29
    • 上网日期:2022-03-04
    • 刊出日期:2022-06-05

      返回文章
      返回
        Baidu
        map