搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋

    Calculating macroscopic gas molar heat capacity of SO molecule based on rovibrational energy level

    Wen Lin, Fan Qun-Chao, Jian Jun, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Ma Jie, Xie Feng
    PDF
    HTML
    导出引用
    • 本文在研究SO宏观气体摩尔热容的工作中, 进一步考虑了分子内部的转动贡献, 通过联立能获得分子某电子态完全振动能级的变分代数法 (variational algebraic method, VAM) 和RKR (Rydberg-Klein-Rees) 方法构建了SO电子基态的势能函数, 解析求解获得了该体系的振转能级, 进而采用量子统计系综理论计算得到了300—6000 K温度范围内SO宏观气体的摩尔热容. 将本文的计算结果与其他几种理论模型的计算结果进行比较分析, 结果表明: 当采用基于全程势能曲线求解的完全振转能级来计算热力学性质时, 得到的摩尔热容与实验结果更为吻合. 本文利用分子完全振转能级计算摩尔热容的思路, 弥补了前一阶段工作中仅采用近似模型表征分子转动行为来计算热容的不足, 为基于微观统计过程求解宏观热力学量提供了新的研究范式.
      Sulfur oxide (SO) is a kind of well-known diatomic molecule which becomes one of the major pollutants in the atmosphere. Control of the heat capacity of SO molecule is of great significance for elucidating its macroscopic evolution process. In the research of macroscopic systems composed of many particles as well as several matters, it is an important approach to obtain macroscopic thermodynamic quantities of the system by constructing a partition function from the microscopic information of molecule. For diatomic molecules in a certain electronic state, the partition function can directly be obtained by calculating the rovibrational energy of the system to acquire the macroscopic molar heat capacities. In this work, the contribution of rotational behavior to molar heat capacity is further considered. The potential energy function for the ground electronic state of SO is constructed by the variational algebraic method (VAM) and RKR (Rydberg-Klein-Rees) method, in which the former one can determine the complete vibrational energy levels of an electronic state of a molecule. The rovibrational energy level of the system is obtained by analytical solution, and then the molar heat capacity of SO macroscopic gas in the temperature range of 300–6000 K is calculated by quantum statistical ensemble theory The above calculation depends only on the experimental vibrational energy, experimental rotational spectral constant and the dissociation energy of SO molecule. Fortunately, through comparison between theoretical calculation results and experimental data, we find that the molar heat capacity of gaseous SO molecule can be well predicted by employing the full set of rovibrational energy to describe the internal vibration and rotation of SO molecule. The idea of calculating the molar heat capacity by using the full set of rovibrational energy makes up for the shortcomings of previous work where molar heat capacity is calculated by using the approximate model characterizing the molecular rotational behavior, and also provides a new research paradigm for solving macro thermodynamic quantities based on micro statistical processes .
          通信作者:樊群超,fanqunchao@mail.xhu.edu.cn; 范志祥,fanzhixiang235@126.com;
        • 基金项目:中央引导地方科技发展面上项目 (批准号: 2021ZYD0050)、国家自然科学基金 (批准号: 61722507, 11904295) 和极端光学省部共建协同创新中心开放课题 (批准号: KF2020003) 资助的课题.
          Corresponding author:Fan Qun-Chao,fanqunchao@mail.xhu.edu.cn; Fan Zhi-Xiang,fanzhixiang235@126.com;
        • Funds:Project supported by the Fund for the Program of Science and Technology of Sichuan Province of China (Grant No. 2021ZYD0050), the National Natural Science Foundation of China (Grant Nos. 61722507, 11904295), and the Open Research Fund Program of the Collaborative Innovation Center of Extreme Optics, China (Grant No. KF2020003).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

      • $ {\omega _0} $ $ {\omega _{\text{e}}} $ $ {\omega _{\text{e}}}{x_{\text{e}}} $ $ {\omega _{\text{e}}}{y_{\text{e}}} $ $ {\omega _{\text{e}}}{z_{\text{e}}} $ $ {\omega _{\text{e}}}{t_{\text{e}}} $
        实验[34] 1148.19 6.12
        CASS-
        CF[35]
        1161.80 6.50
        CI-SD[35] 1263.50 5.35
        MP4
        SDQ[35]
        1173.10 5.09
        VAM 0.75 1147.71 5.99 –1.55×10–2 7.59×10–4 –1.30×10–5
        下载: 导出CSV

        T/K ${ C_\upsilon ^{ {\text{expt} } } }^{\rm\; a}$ ${ \Delta C_{\upsilon {\text{, RKR} } }^{ {\text{cal} } } } ^{\rm\; b}$ ${ \Delta C_{\upsilon {\text{, VAM} } }^{ {\text{cal} } } }^{\rm\; c}$ ${ \Delta C_{\upsilon \_r{\text{, RKR} } }^{ {\text{cal} } } } ^{\rm\; d}$ ${ \Delta C_{ {\text{This work} } }^{ {\text{cal} } } }^{\rm\; e}$
        300 30.197 –0.025 –0.024 0.071 0.006
        400 31.560 –0.041 –0.040 0.092 0.009
        500 32.826 –0.057 –0.056 0.080 0.011
        600 33.838 –0.073 –0.072 0.054 0.011
        700 34.612 –0.088 –0.087 0.027 0.011
        800 35.206 –0.108 –0.108 –0.001 0.005
        900 35.672 –0.135 –0.136 –0.032 –0.008
        1000 36.053 –0.177 –0.177 –0.071 –0.035
        1100 36.379 –0.235 –0.235 –0.123 –0.079
        1200 36.672 –0.313 –0.314 –0.192 –0.143
        1300 36.946 –0.412 –0.413 –0.280 –0.228
        1400 37.210 –0.532 –0.533 –0.386 –0.333
        1500 37.469 –0.670 –0.670 –0.508 –0.455
        1600 37.725 –0.822 –0.823 –0.645 –0.593
        1700 37.980 –0.989 –0.989 –0.795 –0.743
        1800 38.232 –1.163 –1.164 –0.952 –0.902
        1900 38.482 –1.345 –1.346 –1.116 –1.068
        2000 38.727 –1.530 –1.530 –1.282 –1.236
        2100 38.967 –1.715 –1.716 –1.449 –1.404
        2200 39.200 –1.899 –1.900 –1.614 –1.571
        2300 39.425 –2.079 –2.079 –1.775 –1.733
        2400 39.641 –2.254 –2.254 –1.929 –1.889
        2500 39.847 –2.422 –2.421 –2.077 –2.038
        2600 40.043 –2.582 –2.581 –2.217 –2.180
        2700 40.229 –2.735 –2.733 –2.349 –2.313
        2800 40.404 –2.879 –2.876 –2.472 –2.436
        2900 40.568 –3.014 –3.009 –2.585 –2.549
        3000 40.721 –3.140 –3.133 –2.689 –2.652
        3100 40.864 –3.258 –3.248 –2.784 –2.746
        3200 40.996 –3.367 –3.352 –2.869 –2.830
        3300 41.119 –3.469 –3.449 –2.946 –2.904
        3400 41.232 –3.562 –3.536 –3.015 –2.969
        3500 41.336 –3.649 –3.615 –3.076 –3.025
        3600 41.432 –3.729 –3.686 –3.130 –3.072
        3700 41.520 –3.804 –3.749 –3.178 –3.111
        3800 41.601 –3.874 –3.806 –3.220 –3.143
        3900 41.676 –3.940 –3.857 –3.259 –3.168
        4000 41.745 –4.002 –3.902 –3.293 –3.187
        4100 41.810 –4.063 –3.943 –3.326 –3.202
        4200 41.871 –4.122 –3.980 –3.356 –3.211
        4300 41.929 –4.180 –4.014 –3.387 –3.217
        4400 41.986 –4.241 –4.047 –3.419 –3.221
        4500 42.042 –4.303 –4.079 –3.453 –3.224
        4600 42.098 –4.367 –4.111 –3.490 –3.226
        4700 42.156 –4.437 –4.144 –3.533 –3.229
        4800 42.217 –4.512 –4.181 –3.581 –3.235
        4900 42.282 –4.593 –4.221 –3.637 –3.244
        5000 42.352 –4.682 –4.266 –3.702 –3.258
        5100 42.429 –4.781 –4.318 –3.778 –3.279
        5200 42.514 –4.891 –4.377 –3.865 –3.307
        5300 42.608 –5.012 –4.445 –3.966 –3.344
        5400 42.712 –5.146 –4.523 –4.080 –3.392
        5500 42.829 –5.295 –4.614 –4.211 –3.453
        5600 42.959 –5.459 –4.718 –4.359 –3.527
        5700 43.104 –5.641 –4.837 –4.526 –3.617
        5800 43.265 –5.841 –4.971 –4.714 –3.724
        5900 43.444 –6.061 –5.123 –4.923 –3.849
        6000 43.620 –6.280 –5.273 –5.133 –3.973
        $ \Delta {C_{{\text{aver}}}} $f 2.896 2.721 2.363 2.084
        注: a. 实验热容; b. 基于实验振动能级运用近似模型所得热容值与实验值的误差; c. 基于VAM完全振动能级运用近似模型所得热容值与实验值的误差; d. 基于实验振转能级所得热容值与实验值的误差; e. 基于完全振转能级所得热容值与实验值的误差; f. $\Delta {C_{ {\text{aver} } } } = \dfrac{ {\text{1} } }{w} \displaystyle\sum {\left| { {C_{\text{m} } } - {C_{ {\text{expt} } } } } \right|}$,w为参与计算的热容值个数.
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

      • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田.SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 必威体育下载 , 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [2] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根.NO分子宏观气体热力学性质的理论研究. 必威体育下载 , 2020, 69(5): 053301.doi:10.7498/aps.69.20191723
        [3] 王巧霞, 王玉敏, 马日, 闫冰.7Li2(0, ±1)分子体系基态振-转能级的全电子计算. 必威体育下载 , 2019, 68(11): 113102.doi:10.7498/aps.68.20190359
        [4] 魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰.SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算. 必威体育下载 , 2016, 65(16): 163101.doi:10.7498/aps.65.163101
        [5] 徐梅, 王晓璐, 令狐荣锋, 杨向东.Ne原子与HF分子碰撞振转激发分波截面的研究. 必威体育下载 , 2013, 62(6): 063102.doi:10.7498/aps.62.063102
        [6] 张燚, 孙卫国, 付佳, 樊群超, 冯灏, 李会东.用节点变分的代数方法研究双原子体系的完全振动能谱和离解能. 必威体育下载 , 2012, 61(13): 133301.doi:10.7498/aps.61.133301
        [7] 沈光先, 汪荣凯, 令狐荣锋, 杨向东.He-H2(D2,T2)碰撞体系振转相互作用势及分波截面的理论计算. 必威体育下载 , 2011, 60(1): 013101.doi:10.7498/aps.60.013101
        [8] 陈慧敏, 刘恩隆.纳米颗粒与纳米块材摩尔定压热容的理论计算. 必威体育下载 , 2011, 60(6): 066501.doi:10.7498/aps.60.066501
        [9] 王晓璐, 徐梅, 令狐荣锋, 孙克斌, 杨向东.氦同位素与氢分子碰撞的振转激发分波截面研究. 必威体育下载 , 2010, 59(3): 1689-1694.doi:10.7498/aps.59.1689
        [10] 莫嘉琪, 林万涛.一个全球气候赤道海气振子模型的变分迭代解法. 必威体育下载 , 2008, 57(11): 6689-6693.doi:10.7498/aps.57.6689
        [11] 樊群超, 孙卫国, 渠双双.用代数方法精确研究HF分子B1Σ的振转能谱. 必威体育下载 , 2008, 57(7): 4110-4118.doi:10.7498/aps.57.4110
        [12] 杨宏伟, 袁 洪, 陈如山, 杨 阳.各向异性磁化等离子体的SO-FDTD算法. 必威体育下载 , 2007, 56(3): 1443-1446.doi:10.7498/aps.56.1443
        [13] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒.中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 必威体育下载 , 2007, 56(8): 4435-4440.doi:10.7498/aps.56.4435
        [14] 于亚璇, 王 琪, 赵雪芹, 智红燕, 张鸿庆.求解非线性差分方程孤立波解的直接代数法. 必威体育下载 , 2005, 54(9): 3992-3994.doi:10.7498/aps.54.3992
        [15] 刘玉芳, 徐后菊, 吴言宁, 孙金锋, 丛书林, 韩克利.SO ( B1)离子的结构与势能函数. 必威体育下载 , 2004, 53(6): 1749-1752.doi:10.7498/aps.53.1749
        [16] 石玉珠, 李丽萍, 李毓成.强磁场中氢原子能级的另一种绝热变分计算. 必威体育下载 , 1998, 47(8): 1241-1247.doi:10.7498/aps.47.1241
        [17] 任延琦, 王启新, 张庆刚, 张怿慈.原子-振子散射振转激发跃迁几率的理论计算. 必威体育下载 , 1993, 42(10): 1580-1586.doi:10.7498/aps.42.1580
        [18] 车广灿, 陈立泉.Li2SO4—Li2B2O4,Li2SO4—(NH4)2SO4赝二元系相图及离子导电性研究. 必威体育下载 , 1981, 30(9): 1219-1224.doi:10.7498/aps.30.1219
        [19] 陈金全, 高美娟, 王凡.群表示论的物理方法(Ⅴ)——SU3?SO3和SU4?SU2×SU2分类基. 必威体育下载 , 1978, 27(3): 237-246.doi:10.7498/aps.27.237
        [20] 刘敦桓.过渡区偶-偶核的振转耦合. 必威体育下载 , 1965, 21(5): 952-960.doi:10.7498/aps.21.952
      计量
      • 文章访问数:2981
      • PDF下载量:39
      • 被引次数:0
      出版历程
      • 收稿日期:2021-12-08
      • 修回日期:2022-04-21
      • 上网日期:2022-08-13
      • 刊出日期:2022-09-05

        返回文章
        返回
          Baidu
          map