\begin{document}$p_{\rm c}$\end{document}与格点结构之间的关联. 通过引入参数\begin{document}$\xi = \displaystyle\sum\nolimits_{i} z_{i} r_{i}^{2} / i$\end{document} (其中\begin{document}$z_{i}$\end{document}\begin{document}$r_{i}$\end{document}分别为第i近邻格点的配位数及到中心格点的距离)来消除“简并”, 研究发现\begin{document}$p_{\rm c}$\end{document}ξ的变化较好地满足幂律关系\begin{document}$p_{\rm c} \propto \xi^{-\gamma}$\end{document}, 数值拟合得\begin{document}$\gamma \approx 1$\end{document}."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    寻之朋, 郝大鹏

    Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods

    Xun Zhi-Peng, Hao Da-Peng
    PDF
    HTML
    导出引用
    • 基于高效的单团簇生长算法, 采用蒙特卡罗方法模拟了考虑最近邻、次近邻, 直至第五近邻格点的二维正方格子的键渗流. 计算得到了二十余种格点模型高精度的键渗流阈值, 并深入探讨了渗流阈值 $p_{\rm c}$ 与格点结构之间的关联. 通过引入参数 $\xi = \displaystyle\sum\nolimits_{i} z_{i} r_{i}^{2} / i$ (其中 $z_{i}$ $r_{i}$ 分别为第 i近邻格点的配位数及到中心格点的距离)来消除“简并”, 研究发现 $p_{\rm c}$ ξ的变化较好地满足幂律关系 $p_{\rm c} \propto \xi^{-\gamma}$ , 数值拟合得 $\gamma \approx 1$ .
      Based on an effective single cluster growth algorithm, bond percolation on square lattice with the nearest neighbors, the next nearest neighbors, up to the 5th nearest neighbors are investigated by Monte Carlo simulations. The bond percolation thresholds for more than 20 lattices are deduced, and the correlations between percolation threshold $p_{\rm c}$ and lattice structures are discussed in depth. By introducing the index $\xi = \displaystyle\sum\nolimits_{i} z_{i} r_{i}^{2} / i$ to remove the degeneracy, it is found that the thresholds follow a power law $p_{\rm c} \propto \xi^{-\gamma}$ , with $\gamma \approx 1$ , where $z_{i}$ is the ith neighborhood coordination number, and $r_{i}$ is the distance between sites in the i-th coordination zone and the central site.
          通信作者:寻之朋,zpxun@cumt.edu.cn; 郝大鹏,dphao@cumt.edu.cn
        • 基金项目:中央高校基本科研业务费专项资金(批准号: 2020ZDPYMS31)资助的课题.
          Corresponding author:Xun Zhi-Peng,zpxun@cumt.edu.cn; Hao Da-Peng,dphao@cumt.edu.cn
        • Funds:Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2020ZDPYMS31).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

      • 格点模型 总配
        位数z
        标量
        参数ξ
        键渗流阈值 $p_{\rm c}$
        SQ-1, 2,
        SQ-2, 5
        8 8 0.2503683(7)
        $\text{SQ-}1, 3$ 8 9.33 0.2214989(9)
        $\text{SQ-}1, 5$ 8 10.4 0.1972557(13)
        $\text{SQ-}4$ 8 10 0.1937380(10)
        SQ-1, 2, 3,
        SQ-2, 3, 5
        12 13.33 0.1522201(9)
        $\text{SQ-}1, 2, 5$ 12 14.4 0.1380527(7)
        $\text{SQ-}1, 4$ 12 14 0.1362105(5)
        $\text{SQ-}2, 4$ 12 14 0.1345500(10)
        $\text{SQ-}1, 3, 5$ 12 15.73 0.1342972(8)
        $\text{SQ-}3, 4$ 12 15.33 0.1309686(14)
        $\text{SQ-}4, 5$ 12 16.4 0.1247135(15)
        $\text{SQ-}1, 2, 4$ 16 18 0.1059928(8)
        $\text{SQ-}1, 2, 3, 5$ 16 19.73 0.1032173(7)
        $\text{SQ-}1, 3, 4$ 16 19.33 0.1027026(6)
        $\text{SQ-}2, 3, 4$ 16 19.33 0.1011488(8)
        $\text{SQ-}1, 4, 5$ 16 20.4 0.0978026(14)
        $\text{SQ-}2, 4, 5$ 16 20.4 0.0967349(11)
        $\text{SQ-}3, 4, 5$ 16 21.73 0.0954613(7)
        $\text{SQ-}1, 2, 3, 4$ 20 23.33 0.0841507(7)
        $\text{SQ-}1, 2, 4, 5$ 20 24.4 0.0804649(9)
        $\text{SQ-}1, 3, 4, 5$ 20 25.73 0.0790839(9)
        $\text{SQ-}2, 3, 4, 5$ 20 25.73 0.0780764(6)
        $\text{SQ-}1, 2, 3, 4, 5$ 24 29.73 0.0671855(5)
        下载: 导出CSV

        i近邻 距中心格点
        距离的平方 $r_{i}^{2}$
        i近邻
        格点数 $z_{i}$
        总配位数z
        1 1 4 4
        2 2 4 8
        3 4 4 12
        4 5 8 20
        5 8 4 24
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

      计量
      • 文章访问数:3418
      • PDF下载量:59
      • 被引次数:0
      出版历程
      • 收稿日期:2021-09-21
      • 修回日期:2021-11-11
      • 上网日期:2022-01-26
      • 刊出日期:2022-03-20

        返回文章
        返回
          Baidu
          map