-
Semi-quantum secure direct communication allows the quantum party and the classical party to transmit secure messages directly, but does not need sharing a secret key in advance. To increase the information transmission efficiency and practicability of semi-quantum secure direct communication, a bidirectional semi-quantum secure direct communication protocol with high-dimensional single-particle states is designed. The proposed protocol involves quantum party Alice and classical party Bob. Each participant can receive a secret message while sending a secret message. Unlike most of existing quantum secure direct communication protocols, it is not necessary for the classical party Bob in the proposed protocol to possess the capability of measuring quantum states, which greatly enhances the feasibility of the protocol. The protocol allows the classical party Bob to implement the unitary operations on particles and reorder the quantum sequence. Furthermore, the quantum party Alice and the classical party Bob can verify the correctness of the received secret message with the Hash function. Security analysis indicates that without being discovered by the legitimate participants, Eve cannot obtain the secret message with common attack, such as intercept-resend attack, measure-resend attack, tampering attack and entanglement-measure attack. Compared with the typical semi-quantum secure direct communication protocols, the proposed protocol has a high qubit efficiency of about 28.6%. In addition, the transmission efficiency of secret message is greatly enhanced, since the proposed protocol utilizes the high-dimensional single-particle states as the carrier of secret message.
-
Keywords:
- semi-quantum secure direct communication/
- high-dimensional single-particle state/
- bi-directional communication/
- security analysis
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] -
原始状态所属基 Bob的操作 标记为 $\overline Z $ CTRL $\overline Z - {\text{CTRL}}$ $\overline Z $ ${U_m}$ $\overline Z - U$ $\overline X $ CTRL $\overline X - {\text{CTRL}}$ $\overline X $ ${U_m}$ $\overline X - U$ 原始状态 Bob的操作 Alice的操作 预期结果 $\left| k \right\rangle $ CTRL $\overline Z $基测量 $\left| k \right\rangle $ $\left| k \right\rangle $ ${U_m}$ $\overline Z $基测量 $\left| {k \oplus m} \right\rangle $ $F\left| k \right\rangle $ CTRL $\overline X $基测量 $F\left| k \right\rangle $ $F\left| k \right\rangle $ ${U_m}$ $\overline X $基测量 $F\left| k \right\rangle $ Alice发送的粒子 Bob的操作 Eve的操作 Alice的操作 窃听是否会被发现 $\overline Z $ CTRL CTRL 用$\overline Z $基测量 否 $\overline Z $ CTRL ${U_m}$ 用$\overline Z $基测量 是 $\overline Z $ ${U_m}$ CTRL 用$\overline Z $基测量 $\dfrac{ {d - 1} }{ {2 d} }$的概率被发现 $\overline Z $ ${U_m}$ ${U_m}$ 用$\overline Z $基测量 $\dfrac{ {d - 1} }{ {2 d} }$的概率被发现 $\overline X $ CTRL CTRL 用$\overline X $基测量 否 $\overline X $ CTRL ${U_m}$ 用$\overline X $基测量 否 $\overline X $ ${U_m}$ CTRL 用$\overline X $基测量 否 $\overline X $ ${U_m}$ ${U_m}$ 用$\overline X $基测量 否 Alice发送的粒子 Eve的测量基 Bob得到的粒子 Bob的操作 Alice的操作 窃听是否被发现 $\overline Z $ $\overline Z $ $\overline Z $ CTRL $\overline Z $基测量 否 $\overline Z $ $\overline Z $ $\overline Z $ ${U_m}$ $\overline Z $基测量 否 $\overline Z $ $\overline X $ $\overline X $ CTRL $\overline Z $基测量 $\dfrac{ {d - 1} }{d}$概率被发现 $\overline Z $ $\overline X $ $\overline X $ ${U_m}$ $\overline Z $基测量 $\dfrac{ {d - 1} }{ {2 d} }$概率被发现 $\overline X $ $\overline Z $ $\overline Z $ CTRL $\overline X $基测量 $\dfrac{ {d - 1} }{d}$概率被发现 $\overline X $ $\overline Z $ $\overline Z $ ${U_m}$ $\overline X $基测量 $\dfrac{ {d - 1} }{d}$概率被发现 $\overline X $ $\overline X $ $\overline X $ CTRL $\overline X $基测量 否 $\overline X $ $\overline X $ $\overline X $ ${U_m}$ $\overline X $基测量 否 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43]
计量
- 文章访问数:3323
- PDF下载量:92
- 被引次数:0