\begin{document}$\leftrightarrow $\end{document}X2Σ+跃迁具有高对角分布的弗兰克-康登因子f00, 第一激发态A2∏有较短的自发辐射寿命. 构造A2∏ (ν′) \begin{document}$\leftrightarrow $\end{document} X2Σ+ (\begin{document}$\nu''$\end{document})准循环跃迁进行激光冷却LiCl 阴离子需要一束主激光和两束抽运激光. 以上结果预测了激光冷却LiCl阴离子是可行的."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    郭芮, 谭涵, 袁沁玥, 张庆, 万明杰

    Spectroscopic and transition properties of LiClanion

    Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie
    PDF
    HTML
    导出引用
    • 采用多参考组态相互作用方法结合全电子基组计算了LiCl -阴离子5个电子态 (X 2Σ +, A 2∏, B 2Σ +, 3 2Σ +, 2 2∏) 的电子结构. 为了得到精确的光谱常数, 计算中考虑了Davidson 修正、芯-价电子关联效应和自旋-轨道耦合效应. 拟合得到各电子态的光谱常数、分子常数、自发辐射速率和自发辐射寿命. 基态的光谱常数与实验值和其他理论值符合较好, 同时报道了LiCl 阴离子激发态的光谱常数以及其到基态的跃迁性质. 计算结果表明A 2 $\leftrightarrow $ X 2Σ +跃迁具有高对角分布的弗兰克-康登因子 f 00, 第一激发态A 2∏有较短的自发辐射寿命. 构造A 2∏ ( ν′) $\leftrightarrow $ X 2Σ +( $\nu''$ )准循环跃迁进行激光冷却LiCl 阴离子需要一束主激光和两束抽运激光. 以上结果预测了激光冷却LiCl 阴离子是可行的.
      The electronic structure of the X 2Σ +, A 2Π, B 2Σ +, 3 2Σ +, and 2 2Π state of LiCl anion are performed at an MRCI+Q level. Davison correction, core-valence correction and spin-orbit coupling effect are also considered. The ground state X 2Σ +of LiCl anion correlates with the lowest dissociation channel Li( 2S g) + Cl ( 1S g); the A 2∏ state and B 2Σ +state correlate with the second dissociation channel Li( 2P u) + Cl ( 1S g); the 3 2Σ +state and 2 2Π state correlate with the third dissociation channel Li ( 1S g) + Cl ( 2P u). Spectroscopic parameters are calculated by solving the radial Schröedinger equation. The equilibrium internuclear distance R eof the ground state X 2Σ +is 2.1352 Å, which is a little bigger than the experimental datum, with an error being 0.5%. It is a deep potential well, and the dissociation energy D eis 1.886 eV. These values are in good agreement with experimental data. The A 2∏ state is at 13431.93 cm –1above the X 2Σ +state. The R eis 2.1198 Å, which is only 0.0154 Å smaller than that of the X 2Σ +state. The values of energy level G νand rotational constant B νof five Λ-S states are also calculated. The values are in good agreement with available theoretical ones. The electronic structures of the excited states are also reported. The SOC effect weakly influences the spectroscopic parameters for the $ {\text{X}}{}^2\Sigma _{1/2}^ + $ , $ {\text{A}}{}^2{\Pi _{1/2}} $ , $ {\text{A}}{}^2{\Pi _{3/2}} $ , and $ {\text{B}}{}^2\Sigma _{1/2}^ + $ state. From the analysis of the SO matrix, it can be seen that the SOC effect plays a little role in realizing the A 2Π $\leftrightarrow $ X 2Σ +transition, so, it can be ignored. The scheme of laser cooling of LiCl anion has constructed at a spin – free level. The A 2∏( ν ) $\leftrightarrow $ X 2Σ +( $v'' $ ) transition has a highly diagonally distributed Franck-Condon factor f 00= 0.9898, the calculated branching ratio of the diagonal term R 00is 0.9893, and spontaneous radiative lifetime of A 2∏ is 35.45 ns. A main pump laser and two repumping lasers for driving the A 2∏( ν ) $\leftrightarrow $ X 2Σ +( $v'' $ ) transitions are required. The laser wavelengths are 744.10, 774.30 and 772.42 nm, respectively. Owing to the summation of R 00, R 01, and R 02being closer to 1, the A 2∏( ν ) $\leftrightarrow $ X 2Σ +( $v'' $ ) transition is a quasicycling transition. These results imply that the LiCl anion is a candidate for laser cooling.
          通信作者:万明杰,wanmingjie1983@sina.com
        • 基金项目:宜宾学院国家级大学生创新创业训练计划项目(批准号: 202110641022),宜宾学院预研项目(批准号: 2019YY06)和宜宾学院计算物理四川省高等学校重点实验室开放基金(YBXYJSWL-ZD-2020-001)资助的课题
          Corresponding author:Wan Ming-Jie,wanmingjie1983@sina.com
        • Funds:Project supported by the National Undergraduate Training Program for Innovation, Entrepreneurship of Yibin University (Grant No. 202110641022) and the Pre-Research Project of Yibin University, China (Grant No. 2019YY06) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. YBXYJSWL-ZD-2020-001)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

      • ΔE/cm–1
        原子态 分子态 本文工作 实验值[3638]
        Li(2Sg)+Cl(1Sg) X2Σ+ 0 0
        Li(2Pu)+ Cl(1Sg) A2Π, B2Σ+ 14903.79 14253.13
        Li(1Sg)+Cl(2Pu) 32Σ+, 22Π 23703.61 24594.67
        下载: 导出CSV

        电子态 Re ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV D0/eV Te/cm–1
        X2Σ+ 2.1352 535.33 5.8173 0.7205 1.8886 1.856 0
        实验值[20] 2.18(4) 0
        实验值[21] 2.123(15) 1.75(2) 0
        理论值[22] 2.12a 0
        理论值[23] 2.1354 537.7b 6.34b 0.7203b 1.81 0
        A2 2.1198 554.65 5.7157 0.7310 1.9902 1.9559 13431.93
        B2Σ+ 2.0282 652.79 6.1252 0.7985 1.6653 1.6250 17491.75
        32Σ+ 5.8594 30.19 0.8483 0.0963 0.0362 0.0353 38607.64
        22 7.1411 39.08 0.5616 0.0638 0.0136 0.0112 38855.32
        a采用HF方法计算得到基态的核间距.
        下载: 导出CSV

        ν X2Σ+ A2 B2Σ+ 32Σ+ 22
        Gν Bν Gν Bν Gν Bν Gν Bν Gν Bν
        本文工作 文献[23] 本文工作 文献[23] 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作 本文工作
        0 266.72 264.07 0.7146 0.7143 276.48 0.7252 325.33 0.7927 14.96 0.0940 6.12 0.0631
        1 790.93 791.77 0.7029 0.7023 820.21 0.7136 966.07 0.7811 43.02 0.0893 18.15 0.0618
        2 1303.27 1307.01 0.6911 0.6903 1352.13 0.7021 1594.23 0.7697 68.84 0.0857 28.92 0.0572
        3 1803.71 1809.92 0.6794 0.6784 1872.34 0.6907 2210.02 0.7584 93.22 0.0826 29.30 0.0095
        4 2292.31 2300.65 0.6677 0.6666 2380.97 0.6793 2813.56 0.7471 116.24 0.0796 31.32 0.0112
        5 2769.15 2779.34 0.6560 0.6548 2878.13 0.6680 3404.89 0.7359 138.17 0.0765 33.19 0.0125
        6 3234.29 3246.11 0.6444 0.6430 3363.87 0.6567 3984.09 0.7247 158.98 0.0725 35.07 0.0140
        7 3687.83 3701.10 0.6328 0.6313 3838.29 0.6455 4551.20 0.7135 178.26 0.0678 36.53 0.0310
        8 4129.88 4144.45 0.6212 0.6197 4301.42 0.6343 5106.17 0.7023 195.60 0.0626 37.33 0.0257
        9 4560.61 4576.29 0.6097 0.6081 4753.37 0.6231 5648.95 0.6911 210.77 0.0571 39.11 0.0188
        下载: 导出CSV

        ΔE/cm–1
        原子态 分子态 Ω 本文工作 实验值[3638]
        Li(2S1/2)+Cl(1S0) 1/2 0 0
        Li(2P1/2)+ Cl(1S0) 1/2 14252.77 14903.62
        Li(2P3/2)+ Cl(1S0) 1/2, 3/2 14253.50 14903.96
        Li(1S0)+Cl(2P3/2) 1/2, 3/2 23415.41 24153.49
        Li(1S0)+Cl(2P1/2) 1/2 24288.48 25035.84
        下载: 导出CSV

        Ω态 Re ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV Te/cm–1
        $ {\text{X}}{}^2\Sigma _{1/2}^ + $ 2.1352 535.32 5.8172 0.7205 1.8886 0
        $ {\text{A}}{}^2{\Pi _{1/2}} $ 2.1196 554.87 5.7153 0.7311 2.0094 13419.77
        $ {\text{A}}{}^2{\Pi _{3/2}} $ 2.1200 554.41 5.7160 0.7308 2.0059 13444.07
        $ {\text{B}}{}^2\Sigma _{1/2}^ + $ 2.0282 652.79 6.1253 0.7985 1.6679 17491.75
        下载: 导出CSV

        SO矩阵元
        $ {\text{S}}{{\text{O}}_1} = - {\text{i}}\left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_2} = \left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $ $ {\text{S}}{{\text{O}}_3} = - {\text{i}}\left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_4} = \left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $
        $ {\text{S}}{{\text{O}}_5} = - {\text{i}}\left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_6} = \left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $ $ {\text{S}}{{\text{O}}_7} = - {\text{i}}\left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_8} = \left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $
        $ {\text{S}}{{\text{O}}_9} = - {\text{i}}\left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_{10}} = \left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $ $ {\text{S}}{{\text{O}}_{11}} = - {\text{i}}\left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_{12}} = \left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $
        $ {\text{S}}{{\text{O}}_{13}} = {\text{i}}\left\langle {{{\text{A}}^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_{14}} = {\text{i}}\left\langle {{2^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $ $ {\text{S}}{{\text{O}}_{15}} = {\text{i}}\left\langle {{2^2}{\Pi _y}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $ $ {\text{S}}{{\text{O}}_{16}} = {\text{i}}\left\langle {{2^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $
        下载: 导出CSV

        跃迁 f00 f01 f02 f03
        A00 A01 A02 A03 τ= 1/ΣA
        f10 f11 f12 f13
        A10 A11 A12 A13
        A2∏ $\leftrightarrow $ X2Σ+ 0.9898 0.0101 0.0001 8.70(–7)
        27904200 298313 3848.85 44.60 35.45
        0.0102 0.9686 0.0209 0.0004
        269660 27336600 607335 12332 35.43
        B2Σ+$\leftrightarrow $ X2Σ+ 0.5908 0.2909 0.0894 0.0225
        18316800 7658290 2038730 452210 34.99
        0.3266 0.1286 0.2888 0.1671
        12279600 4261780 7988480 3979390 33.00
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

      • [1] 朱宇豪, 李瑞.基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 必威体育下载 , 2024, 73(5): 053101.doi:10.7498/aps.73.20231347
        [2] 尹俊豪, 杨涛, 印建平.基于 ${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$ 跃迁的CaH分子激光冷却光谱理论研究. 必威体育下载 , 2021, 70(16): 163302.doi:10.7498/aps.70.20210522
        [3] 万明杰, 柳福提, 黄多辉.考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质. 必威体育下载 , 2021, 70(3): 033101.doi:10.7498/aps.70.20201413
        [4] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰.LiCl-阴离子的光谱性质和跃迁性质. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211688
        [5] 万明杰, 李松, 金成国, 罗华锋.激光冷却SH阴离子的理论研究. 必威体育下载 , 2019, 68(6): 063103.doi:10.7498/aps.68.20182039
        [6] 万明杰, 罗华锋, 袁娣, 李松.激光冷却KCl阴离子的理论研究. 必威体育下载 , 2019, 68(17): 173102.doi:10.7498/aps.68.20190869
        [7] 邢伟, 孙金锋, 施德恒, 朱遵略.AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 必威体育下载 , 2018, 67(19): 193101.doi:10.7498/aps.67.20180926
        [8] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花.GeS分子基态和低激发态的势能曲线与光谱性质. 必威体育下载 , 2016, 65(6): 063102.doi:10.7498/aps.65.063102
        [9] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 必威体育下载 , 2014, 63(12): 123102.doi:10.7498/aps.63.123102
        [10] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超.SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 必威体育下载 , 2014, 63(8): 083102.doi:10.7498/aps.63.083102
        [11] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.AlC分子 X4∑-和B4∑-电子态的光谱性质. 必威体育下载 , 2013, 62(11): 113101.doi:10.7498/aps.62.113101
        [12] 朱遵略, 郎建华, 乔浩.SF分子基态及低激发态势能函数与光谱常数的研究. 必威体育下载 , 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 必威体育下载 , 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.理论研究B2分子X3g-和A3u态的光谱性质. 必威体育下载 , 2012, 61(20): 203101.doi:10.7498/aps.61.203101
        [15] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛.PH, PD和PT分子常数理论研究. 必威体育下载 , 2012, 61(6): 063104.doi:10.7498/aps.61.063104
        [16] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.SO+离子b4∑-态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(24): 243102.doi:10.7498/aps.61.243102
        [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋.用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 必威体育下载 , 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [18] 王杰敏, 孙金锋.采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 必威体育下载 , 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [19] 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 必威体育下载 , 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [20] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略.基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 必威体育下载 , 2009, 58(11): 7646-7653.doi:10.7498/aps.58.7646
      计量
      • 文章访问数:4173
      • PDF下载量:75
      • 被引次数:0
      出版历程
      • 收稿日期:2021-09-10
      • 修回日期:2021-10-09
      • 上网日期:2022-02-20
      • 刊出日期:2022-02-20

        返回文章
        返回
          Baidu
          map