-
量子通信是量子科学技术的一个重要研究领域, 是一种利用量子力学原理, 能够在合法各方之间安全地传输私密信息的通信方式. 基于单光子的确定性安全量子通信通常需要在发送方和接收方之间来回两次传输单光子态, 并利用局域幺正变换加载信息. 本文提出了一种单向传输单光子态的确定性安全量子通信方案. 发送方利用单光子的极化和time-bin两自由度构成的两组共轭基矢量来编码经典逻辑比特. 接收方通过设计合适的测量装置可以在发送方辅助下确定性地获取比特信息并感知窃听, 从而实现信息的确定性安全传输. 另外, 我们的协议使用线性光学元件和单光子探测器, 可以在当前的量子通信装置上实现.Quantum communication is an important branch of quantum technology. It can safely transmit private information between legitimate parties and its unconditional security is guaranteed by quantum physics. So far, deterministic secure quantum communication without entanglement usually transmits single photons in two-way quantum channels. We propose a deterministic secure quantum communication proposal, and it requires a one-way quantum channel and a classical channel. In our protocol, a sender encodes logical bits by using two conjugate bases consisting of the polarization and time-bin degrees of freedom of a photon and transmits it to a receiver over a quantum channel. Upon receiving this photon, the receiver measures it randomly in two bases and can decode the bit deterministically with the help of the sender. Any attack from eavesdroppers will be detected by the legitimate parties. Furthermore, this protocol can be implemented with linear-optic elements and single-photon detectors.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] -
量子态 下路径 右路径 $ \left| {H{t_{{ + }}}} \right\rangle $ $ {D_1}\left( {{t_0}} \right)/{D_1}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $ $ \left| {V{t_ - }} \right\rangle $ $ {D_2}\left( {{t_0}} \right)/{D_2}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right)/{D_5}\left( {{t_1}} \right) $ $ \left| { + {t_0}} \right\rangle $ $ {D_1}\left( {{t_0}} \right)/{D_2}\left( {{t_0}} \right) $ $ {D_5}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $ $ \left| { - {t_0}} \right\rangle $ $ {D_1}\left( {{t_1}} \right)/{D_2}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right)/{D_4}\left( {{t_1}} \right) $ 响应 $ {D_1}\left( {{t_0}} \right) $ $ {D_1}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ 概率 $ {1}/{4} $ $ {1}/{4} $ $ {1}/{4} $ $ {1}/{4} $ 光子态 $ \left| {H{t_ + }} \right\rangle $ $ \left| { + {t_0}} \right\rangle $ $ \left| { - {t_1}} \right\rangle $ 概率 $ {1}/{2} $ $ {1}/{4} $ $ {1}/{4} $ 探测器响应 $ {D_1}\left( {{t_0}} \right) $ $ {D_1}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ $ {D_2}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ $ {D_5}\left( {{t_1}} \right) $ 概率 $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ 响应 $ {D_2}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ $ {D_5}\left( {{t_1}} \right) $ 概率 $1/{4}$ $1/{4}$ $1/{4}$ $1/{4}$ 光子态 $ \left| {V{t_ - }} \right\rangle $ $ \left| { + {t_0}} \right\rangle $ $ \left| { - {t_1}} \right\rangle $ 概率 $1/{2}$ $1/{4}$ $1/{4}$ 探测器响应 $ {D_2}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ $ {D_5}\left( {{t_1}} \right) $ $ {D_1}\left( {{t_0}} \right) $ $ {D_1}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ 概率 $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ 响应 $ {D_1}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_0}} \right) $ $ {D_5}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ 概率 ${1}/{4}$ ${1}/{4}$ ${1}/{4}$ ${1}/{4}$ 光子态 $ \left| { + {t_0}} \right\rangle $ $ \left| {H{t_ + }} \right\rangle $ $ \left| {V{t_ - }} \right\rangle $ 概率 ${1}/{2}$ ${1}/{4}$ ${1}/{4}$ 探测器响应 $ {D_1}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_0}} \right) $ $ {D_5}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ $ {D_1}\left( {{t_1}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ 概率 $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ 响应 $ {D_1}\left( {{t_1}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ 概率 $1/{4}$ $1/{4}$ $1/{4}$ $1/{4}$ 光子态 $ \left| { - {t_1}} \right\rangle $ $ \left| {H{t_ + }} \right\rangle $ $ \left| {V{t_ - }} \right\rangle $ 概率 $1/{2}$ $1/{4}$ $1/{4}$ 探测器响应 $ {D_1}\left( {{t_1}} \right) $ $ {D_2}\left( {{t_1}} \right) $ $ {D_3}\left( {{t_1}} \right) $ $ {D_4}\left( {{t_1}} \right) $ $ {D_1}\left( {{t_0}} \right) $ $ {D_2}\left( {{t_0}} \right) $ $ {D_5}\left( {{t_1}} \right) $ $ {D_6}\left( {{t_1}} \right) $ 概率 $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {3}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ $ {1}/{{16}} $ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45]
计量
- 文章访问数:4408
- PDF下载量:148
- 被引次数:0