-
处于太赫兹频段的电磁波表现出许多极具发展前景的特点, 如非电离、“指纹”谱、对弱共振敏感、对非极性物质穿透性强等特性, 并逐步发展成物理、信息、材料、生物、化学等学科基础与应用研究关注的热点. 然而, 在生物、化学物质的传感检测应用中, 当待测物尺度小于入射太赫兹波长时, 微小扰动和细微特征难以被太赫兹波检测到, 并且无法与太赫兹波之间产生充分的相互作用, 这无疑阻碍了太赫兹生物化学传感检测技术的进一步发展. 而太赫兹超材料的迅速发展提供了解决这一问题的全新思路. 近年来, 一系列基于太赫兹超材料的研究工作与新材料、新结构、新机制结合, 为实现高灵敏太赫兹生物化学传感检测带来了新的机遇. 本文主要综述了最近太赫兹超材料应用于生物化学传感检测技术的研究进展, 并简述了评价器件性能的关键参数. 根据材料特性、设计策略的不同, 对基于金属-介质、碳基纳米材料、全硅等太赫兹超材料生物化学传感检测相关工作做了总结, 并在文末对太赫兹超材料传感检测技术的未来发展方向做出了展望.The electromagnetic wave in the terahertz region shows many promising properties, such as non-ionizing, sensitivity to weak resonance, and gradually becomes a basic and applied research hotspot of physics, information, materials, biology, chemistry and other disciplines. However, the analyte molecules tend to be of subwavelength size, and cannot have sufficient interaction with the incident terahertz wave. Small disturbances and subtle features are difficult to detect, which undoubtedly hinders the further development of the terahertz biochemical sensing and detection. The rapid development of terahertz metamaterials provides an alternative method to overcome this obstacle. The intense electromagnetic field enhancement induced by metamaterials allows the sensing and detection application to surpass the limitation of classical terahertz spectroscopy, which is due to the enhancement of the interaction between the analyte and terahertz. In recent years, a series of researches based on terahertz metamaterials combined with new materials, new structures and new mechanisms has offered new opportunities for the application of highly sensitive terahertz biochemical sensing and detection. In this paper, the recent advances in the application of terahertz metamaterials biochemical sensing are reviewed. The related concepts are briefly introduced and the influences of different factors on the sensing performance of metamaterial sensor are analyzed. According to the material selection and design strategies, the related researches of terahertz metamaterial biochemical sensing and detection are summarized. Furthermore, the novel strategy of terahertz metamaterial sensing and detection application based on multidisciplinary are presented, and the future development directions are also discussed, which will greatly conduce to expanding the practicality of terahertz sensing and detection.
-
Keywords:
- terahertz/
- metamaterial/
- biological/
- sensing
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] -
传感检测
实现方式核心
材料功能 性能 文献 直接滴加 金属 黄曲霉毒素B1和B2 最小剂量为5 μL [167] 滴加-干燥 金属 牛血清蛋白浓度检测 最低检测浓度为0.1 mg/mL, 17.6 mg/mL
浓度引起的频移量为137 GHz[141] 滴加-干燥 全金属结构 牛血清蛋白检测 灵敏度为72.81 GHz/(ng/mm2),
检测限为0.035 mg/mL[70] 滴加-干燥 硅 毒死蜱浓度检测 最低浓度20 ppt [140] 滴加-干燥 碳纳米管 2, 4-D 和毒死蜱浓度检测 最低检测量10 ng,
灵敏度为1.38 × 10–2/ppm (2, 4-d)
2.0 × 10–3/ppm (毒死蜱)[138] 特异性抗体修饰 金属 恶性神经胶质瘤细胞检测 最大灵敏度248.75 kHz/(cell mL–1) [57] 特异性抗体修饰 金属 癌胚抗原浓度的检测 检测限为0.1 ng/mL [37] 微流通道 金属 乙醇-水混合物浓度检测 124.3 GHz/RIU [205] 衰减全反射 金属 水环境蔗糖溶液浓度检测 最低检测浓度为0.03125 mol/L [168] 使用石墨烯-超表面混合结构, 微流通道-特异性结合 石墨烯 DNA检测 100 nmol/L DNA 溶液 [206] 特异性适体水凝胶 金属 水环境特异性h-TB检测 检测限为0.40 pmol/L [209] 金纳米颗粒-RCA 金属 金黄色酿脓葡萄球菌 检测限为0.08 pg/mL [188] 石墨烯超表面
手性传感石墨烯 禽流感病毒检测 对H1N1, H5N2, N9N2三种不同类型
禽流感病毒特异性识别[180] 手性传感 金属 纳米颗粒浓度 灵敏度为5.5 GHz%–1 [204] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
计量
- 文章访问数:11943
- PDF下载量:510
- 被引次数:0