搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄

Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques

Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan
PDF
HTML
导出引用
  • 处于太赫兹频段的电磁波表现出许多极具发展前景的特点, 如非电离、“指纹”谱、对弱共振敏感、对非极性物质穿透性强等特性, 并逐步发展成物理、信息、材料、生物、化学等学科基础与应用研究关注的热点. 然而, 在生物、化学物质的传感检测应用中, 当待测物尺度小于入射太赫兹波长时, 微小扰动和细微特征难以被太赫兹波检测到, 并且无法与太赫兹波之间产生充分的相互作用, 这无疑阻碍了太赫兹生物化学传感检测技术的进一步发展. 而太赫兹超材料的迅速发展提供了解决这一问题的全新思路. 近年来, 一系列基于太赫兹超材料的研究工作与新材料、新结构、新机制结合, 为实现高灵敏太赫兹生物化学传感检测带来了新的机遇. 本文主要综述了最近太赫兹超材料应用于生物化学传感检测技术的研究进展, 并简述了评价器件性能的关键参数. 根据材料特性、设计策略的不同, 对基于金属-介质、碳基纳米材料、全硅等太赫兹超材料生物化学传感检测相关工作做了总结, 并在文末对太赫兹超材料传感检测技术的未来发展方向做出了展望.
    The electromagnetic wave in the terahertz region shows many promising properties, such as non-ionizing, sensitivity to weak resonance, and gradually becomes a basic and applied research hotspot of physics, information, materials, biology, chemistry and other disciplines. However, the analyte molecules tend to be of subwavelength size, and cannot have sufficient interaction with the incident terahertz wave. Small disturbances and subtle features are difficult to detect, which undoubtedly hinders the further development of the terahertz biochemical sensing and detection. The rapid development of terahertz metamaterials provides an alternative method to overcome this obstacle. The intense electromagnetic field enhancement induced by metamaterials allows the sensing and detection application to surpass the limitation of classical terahertz spectroscopy, which is due to the enhancement of the interaction between the analyte and terahertz. In recent years, a series of researches based on terahertz metamaterials combined with new materials, new structures and new mechanisms has offered new opportunities for the application of highly sensitive terahertz biochemical sensing and detection. In this paper, the recent advances in the application of terahertz metamaterials biochemical sensing are reviewed. The related concepts are briefly introduced and the influences of different factors on the sensing performance of metamaterial sensor are analyzed. According to the material selection and design strategies, the related researches of terahertz metamaterial biochemical sensing and detection are summarized. Furthermore, the novel strategy of terahertz metamaterial sensing and detection application based on multidisciplinary are presented, and the future development directions are also discussed, which will greatly conduce to expanding the practicality of terahertz sensing and detection.
        通信作者:王玥,wangyue2017@xaut.edu.cn; 王暄,topix@sina.com
      • 基金项目:国家自然科学基金(批准号: 61975163)、陕西省自然科学基金(批准号: 2020JZ-48)、陕西高校青年创新团队(批准号: 21JP084)和工程电介质及其应用教育部重点实验室(哈尔滨理工大学)开放课题(批准号: KEY1805)资助的课题
        Corresponding author:Wang Yue,wangyue2017@xaut.edu.cn; Wang Xuan,topix@sina.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 61975163), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JZ-48), the Youth Innovation Team of Shaanxi Universities, China (Grant No. 21JP084), and the Open Project of the Key Laboratory of Engineering Dielectrics and its Application, Ministry of Education, China (Grant No. KEY1805).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

    • 传感检测
      实现方式
      核心
      材料
      功能 性能 文献
      直接滴加 金属 黄曲霉毒素B1和B2 最小剂量为5 μL [167]
      滴加-干燥 金属 牛血清蛋白浓度检测 最低检测浓度为0.1 mg/mL, 17.6 mg/mL
      浓度引起的频移量为137 GHz
      [141]
      滴加-干燥 全金属结构 牛血清蛋白检测 灵敏度为72.81 GHz/(ng/mm2),
      检测限为0.035 mg/mL
      [70]
      滴加-干燥 毒死蜱浓度检测 最低浓度20 ppt [140]
      滴加-干燥 碳纳米管 2, 4-D 和毒死蜱浓度检测 最低检测量10 ng,
      灵敏度为1.38 × 10–2/ppm (2, 4-d)
      2.0 × 10–3/ppm (毒死蜱)
      [138]
      特异性抗体修饰 金属 恶性神经胶质瘤细胞检测 最大灵敏度248.75 kHz/(cell mL–1) [57]
      特异性抗体修饰 金属 癌胚抗原浓度的检测 检测限为0.1 ng/mL [37]
      微流通道 金属 乙醇-水混合物浓度检测 124.3 GHz/RIU [205]
      衰减全反射 金属 水环境蔗糖溶液浓度检测 最低检测浓度为0.03125 mol/L [168]
      使用石墨烯-超表面混合结构, 微流通道-特异性结合 石墨烯 DNA检测 100 nmol/L DNA 溶液 [206]
      特异性适体水凝胶 金属 水环境特异性h-TB检测 检测限为0.40 pmol/L [209]
      金纳米颗粒-RCA 金属 金黄色酿脓葡萄球菌 检测限为0.08 pg/mL [188]
      石墨烯超表面
      手性传感
      石墨烯 禽流感病毒检测 对H1N1, H5N2, N9N2三种不同类型
      禽流感病毒特异性识别
      [180]
      手性传感 金属 纳米颗粒浓度 灵敏度为5.5 GHz%–1 [204]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

    • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫.单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 必威体育下载 , 2024, 73(2): 026102.doi:10.7498/aps.73.20231357
      [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全.基于石墨烯等离激元太赫兹结构的传感及慢光应用. 必威体育下载 , 2024, 73(15): 157802.doi:10.7498/aps.73.20240668
      [3] 黄若彤, 李九生.太赫兹多波束调控反射编码超表面. 必威体育下载 , 2023, 72(5): 054203.doi:10.7498/aps.72.20221962
      [4] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨.利用样品阱实现太赫兹超材料的超微量传感. 必威体育下载 , 2023, 72(12): 128701.doi:10.7498/aps.72.20230080
      [5] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆.基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 必威体育下载 , 2023, 72(8): 084202.doi:10.7498/aps.72.20222336
      [6] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美.基于多孔金膜的太赫兹导模共振生化传感特性仿真. 必威体育下载 , 2022, 71(21): 218701.doi:10.7498/aps.71.20220722
      [7] 陈闻博, 陈鹤鸣.基于超材料复合结构的太赫兹液晶移相器. 必威体育下载 , 2022, 71(17): 178701.doi:10.7498/aps.71.20212400
      [8] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智.基于双开口金属环的太赫兹超材料吸波体传感器. 必威体育下载 , 2022, 71(10): 108701.doi:10.7498/aps.71.20212303
      [9] 龙洁, 李九生.相变材料与超表面复合结构太赫兹移相器. 必威体育下载 , 2021, 70(7): 074201.doi:10.7498/aps.70.20201495
      [10] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强.双频带太赫兹超材料吸波体传感器传感特性. 必威体育下载 , 2021, 70(16): 168101.doi:10.7498/aps.70.20210062
      [11] 王鑫, 王俊林.太赫兹波段电磁超材料吸波器折射率传感特性. 必威体育下载 , 2021, 70(3): 038102.doi:10.7498/aps.70.20201054
      [12] 李晓楠, 周璐, 赵国忠.基于反射超表面产生太赫兹涡旋波束. 必威体育下载 , 2019, 68(23): 238101.doi:10.7498/aps.68.20191055
      [13] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青.太赫兹液晶材料与器件研究进展. 必威体育下载 , 2019, 68(8): 084205.doi:10.7498/aps.68.20182275
      [14] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨.基于超材料的可调谐的太赫兹波宽频吸收器. 必威体育下载 , 2019, 68(24): 247802.doi:10.7498/aps.68.20191216
      [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨.基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 必威体育下载 , 2018, 67(11): 118102.doi:10.7498/aps.67.20180125
      [16] 郭畅, 张岩.利用波矢滤波超表面实现超衍射成像. 必威体育下载 , 2017, 66(14): 147804.doi:10.7498/aps.66.147804
      [17] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨.基于石墨烯互补超表面的可调谐太赫兹吸波体. 必威体育下载 , 2016, 65(1): 018101.doi:10.7498/aps.65.018101
      [18] 杨磊, 范飞, 陈猛, 张选洲, 常胜江.多功能太赫兹超表面偏振控制器. 必威体育下载 , 2016, 65(8): 080702.doi:10.7498/aps.65.080702
      [19] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云.工字形太赫兹超材料吸波体的传感特性研究. 必威体育下载 , 2015, 64(11): 117801.doi:10.7498/aps.64.117801
      [20] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名.基于超材料的偏振不敏感太赫兹宽带吸波体设计. 必威体育下载 , 2014, 63(17): 178103.doi:10.7498/aps.63.178103
    计量
    • 文章访问数:11943
    • PDF下载量:510
    • 被引次数:0
    出版历程
    • 收稿日期:2021-09-19
    • 修回日期:2021-10-18
    • 上网日期:2021-11-08
    • 刊出日期:2021-12-20

      返回文章
      返回
        Baidu
        map