-
轨道角动量涡旋电磁波可以在物理层面为信息的调制提供新的维度, 这在无线通信和雷达成像领域中拥有很大的应用前景. 将相控阵波束扫描技术应用于涡旋电磁波, 可用于增加涡旋电磁通信的覆盖范围, 也可用于扩大涡旋雷达的探测空域. 首先, 本文讨论了涡旋电磁波束偏转的实现原理, 并给出了实现波束扫描时平面相控阵口径上所需的相位分布公式. 其次, 考虑到相控阵天线在波束扫描以及轨道角动量模式可重构方面的独特优势, 设计并制作了一款阵面规模为8 × 8的平面相控阵, 并在10 GHz频率下实验验证了轨道角动量涡旋电磁波的波束扫描和模式可重构效果. 最后, 本文讨论并分析了涡旋电磁波束偏转后的性能变化. 仿真和实验结果显示, 平面相控阵在大角度波束扫描时会发生方向图畸变的问题. 同时, 本文还研究了涡旋电磁波的模式纯度关于波束偏转角度和模式数的变化情况. 本文的研究结果表明, 使用平面相控阵天线在一定空域内可以有效地实现涡旋电磁波束扫描, 并可为涡旋电磁波通信和涡旋雷达提供参考借鉴.Orbital angular momentum (OAM) vortex electromagnetic waves can provide a new degree of freedom for information modulation at a physical level, which has great prospects of applications in the fields of wireless communication and radar imaging. The application of beam scanning techniques of phased array to OAM vortex electromagnetic wave can increase its communication coverage and expand the detection coverage of vortex radars. Firstly, in this paper, the principle of generating the beam steering vortex electromagnetic beam is discussed and the compensated phase formula for generating beam steering OAM beams is given by planar phased array. Secondly, considering the advantages of phased array antennas in beam scanning and OAM reconfigurability, a planar phased array with 8 × 8 antenna elements at 10 GHz is designed and fabricated. The performances of OAM beam steering and mode reconfigurability are verified. Finally, the performance changes of the deflecting OAM vortex beam at different scanning angles are discussed and analyzed. Simulations and measurements both show that there exist pattern distortion problems when steering angle of OAM beam becomes large. In this paper, the variation of the OAM mode purity is also studied when the scanning angle and the OAM mode number change. The results show that the planar phased array antennas can effectively generate the beam steering OAM vortex beams in a certain angle range. Hence, this paper can provide a reference for the OAM vortex electromagnetic wave communication and the vortex radar in the future.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]
计量
- 文章访问数:5201
- PDF下载量:155
- 被引次数:0