-
热电材料可以实现热能和电能间的直接相互转换, 在半导体制冷和热能回收方面有着重要应用. Zintl相热电材料由电负性差异较大的阴阳离子组成, 其输运特征符合“声子玻璃, 电子晶体”的概念, 因此受到了广泛的研究, 特别是具有二维共价键子结构Zintl相热电材料凭借优异的电性能更是被寄予厚望. 本文综述了具有二维共价键子结构的典型Zintl相热电材料, 梳理了研究最广且性能突出的CaAl 2Si 2结构1-2-2型、原胞内原子较多本征低热导率的9–4+ x–9型、具有天然空位而本征热导率极低的2-1-2型、以及电性能相对较好的ZrBeSi结构1-1-1型Zintl相的研究进展; 其中还特别总结了性能优异的Mg 3Sb 2基n型Zintl材料的研究发展. 本文概括总结了每种体系近年来的研究进展及性能调控方法, 讨论了进一步优化其热电性能的可能策略, 并对其未来发展进行了展望.Thermoelectric materials can realize the direct conversion between thermal energy and electrical energy, and thus having important applications in semiconductor refrigeration and heat recovery. Zintl phase is composed of highly electronegative cations and anions, which accords with the concept of “phonon glass, electron crystal” (PGEC). Thermoelectric properties of Zintl phase have attracted extensive interest, among which the two-dimensional (2D) covalent bond structure featured Zintl phases have received more attention for their outstanding electrical properties. In this review, Zintl phase materials with two-dimensional covalent bond substructures are reviewed, including 1-2-2-type, 9–4+ x–9-type, 2-1-2-type and 1-1-1-type Zintl phase. The 1-2-2-type Zintl phase is currently the most widely studied and best-performing Zintl material. It is worth mentioning that the maximum ZTvalue for the Mg 3Sb 2-based n-type Zintl material with the CaAl 2Si 2structure has been reported to reach 1.85, and the average ZTvalue near room temperature area also reaches 1.4. The 9–4+ x–9-type Zintl material with a mass of atoms in unit cell contributes to lower thermal conductivity thus relatively high ZTvalue. The 2-1-2-type Zintl material has extremely low thermal conductivity due to the intrinsic vacancies, which has been developing in recent years. The 1-1-1-type Zintl material with the same ZrBeSi structure as the 2-1-2-type Zintl material, shows better electrical transport performance. In sum, this review summarizes the recent progress and optimization methods of those typical Zintl phases above. Meanwhile, the future optimization and development of Zintl phase with two-dimensional covalent bond substructures are also prospected.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] -
时间 材料 Ρ/(mΩ·cm) S/ (μV·K–1) κ/(W·m–1·K–1) ZT T/ K ZTRT 2005 Ca0.25Yb0.75Zn2Sb2[36] 3.7 170 1.4 0.56 773 0.08 2007 BaZn2Sb2[38] 6.1 185 1.25 0.33 673 0.05 2008 YbZn1.9Mn0.1Sb2[57] 1.5 150 1.6 0.65 726 0.05 2008 EuZn2Sb2[58] 1.8 180 1.45 0.9 713 0.16 2009 YbCd1.6Zn0.4Sb2[46] 1.66 180 1.1 1.2 650 0.2 2010 Yb0.6Ca0.4Cd2Sb2[37] 4.4 240 0.9 0.96 700 0.14 2010 Yb0.75Eu0.25Cd2Sb2[59] 4 240 1 0.97 650 0.18 2010 EuZn1.8Cd0.2Sb2[47] 2 200 1.4 1.06 650 0.18 2011 YbCd1.85Mn0.15Sb2[60] 5.7 245 0.6 1.14 650 0.17 2012 YbMg2Bi2[39] 5 180 1.8 0.44 650 0.07 2014 Yb0.99Zn2Sb2[61] 1.3 160 1.7 0.85 800 0.05 2016 YbCd1.9Mg0.1Sb2[40] 3.3 230 1.02 1.08 650 0.2 2016 Ca0.5Yb0.5Mg2Bi2[49] 2.8 187 1.08 1 873 0.1 2016 Ca0.995Na0.005Mg2Bi1.98[54] 3 200 1.25 0.9 873 0.05 2016 Eu0.2Yb0.2Ca0.6Mg2Bi2[8] 3.5 215 0.92 1.3 875 0.25 2018 YbCd1.5Zn0.5Sb2[34] 1.7 172 1.2 1.26 700 0.18 2018 Yb0.96Ba0.04Cd1.5Zn0.5Sb2[34] 2 185 0.94 1.3 700 0.18 2019 Ba0.7975Yb0.2Na0.0025Cd2Sb2[41] 4.1 210 0.81 0.93 700 0.1 2019 EuCd1.4Zn0.6Sb2[42] 3.5 220 1 0.96 700 0.18 2020 Ca0.65Yb0.35Mg1.9Zn0.1Bi1.98[43] 2.63 185 1.04 1 773 0.2 2020 YbMg2Bi1.58Sb0.4[44] 4.1 219 1 1.05 873 0.14 2020 Sm0.25Yb0.375Eu0.375Mg2Bi1.99[45] 3.7 197 0.9 0.9 773 0.18 2020 (Yb0.9Mg0.1)Mg0.8Zn1.198Ag0.002Sb2[21] 4.75 257 0.74 1.5 773 0.28 时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT 2006 Mg3Sb2[83] 29 288 1.2 0.21 875 0.001 2013 Mg3Bi0.2Sb1.8[76] 40 400 0.58 0.6 750 0.01 2014 Mg3Pb0.2Sb1.8[48] 28.6 280 0.28 0.84 773 0.03 2015 Mg2.9875Na0.0125Sb2[66] 5.4 200 0.95 0.6 773 0.03 2017 Mg2.985Ag0.015Sb2[22] 9 205 0.65 0.51 725 0.08 2016 Mg3.2Sb1.5Bi0.49Te0.01[67] 5 –286 0.79 1.51 716 0.2 2016 Mg3Sb1.48Bi0.48Te0.04[53] 10 –205 0.73 1.6 750 0.6 2017 Mg3.05Nb0.15Sb1.5Bi0.49Te0.01[9] 4.35 –277 0.84 1.57 700 0.31 2017 Mg3.1Co0.1Sb1.5Bi0.49Te0.01[69] 5.1 –295 0.78 1.7 773 0.4 2018 Mg3.15Mn0.05Sb1.5Bi0.49Te0.01[10] 4.5 –302 0.79 1.85 723 0.42 2019 Mg3+δSb1.5Bi0.49Te0.01:Mn0.01[78] 4.5 –290 0.9 1.6 773 0.65 2019 Mg3.05SbBi0.97Te0.03[74] 1.7 –202 0.92 1.31 500 0.71 2019 Mg3.02Y0.02Sb1.5Bi0.5[11] 4.2 –270 0.76 1.8 773 0.2 2020 Mg3.2Sb1.99Te0.01+GNP[23] 6.4 –320 0.74 1.7 750 0.18 2021 Mg3.17B0.03Sb1.5Bi0.49Te0.01[12] 5.4 –296 0.69 1.81 773 0.62 时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT 2014 Yb9Mn4.2Sb9[87] 7.9 185 0.58 0.7 950 0.035 2015 Eu9Cd3.75Ag1.42Sb9[91] 2.0 85 1.0 0.32 750 0.03 2016 Ca9Zn4.35Cu0.15Sb9[89] 3.0 140 0.8 0.72 873 0.1 2017 Ca9Zn4.6Sb9[27] 11.0 270 0.48 1.1 873 0.1 2019 Ca6.75Eu2.25Zn4.7Sb9[28] 5.55 200 0.53 1.05 773 0.21 2021 Sr9Mg4.45Bi9[90] 3.75 135 0.65 0.57 773 0.14 (323 K) 时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT 2017 Yb2CdSb2[92] 5 155 0.52 0.2 523 0.23 2017 Yb1.64Eu0.36CdSb2[92] 3.5 170 0.6 0.7 523 0.26 2018 Eu2ZnSb2[25] 24.4 290 0.42 0.6 723 0.14 2018 Eu2Zn0.98Sb2[25] 8 220 0.48 1 823 0.22 2020 Eu2Zn0.97Ag0.06Sb2[24] 10 220 0.43 0.93 823 0.2 2020 Eu2Zn0.95Ag0.06Sb2[24] 5.3 194 0.5 1.1 823 0.2 时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m-1·K–1) ZT T/K ZTRT 2018 Ca0.85La0.15Ag0.89Sb[106] 1.85 120 1.3 0.52 860 0.07 2018 Ca0.55Sr0.3La0.15Ag0.89Sb[106] 1.6 125 1.0 0.7 823 0.1 2020 SrAgSb[26] 0.95 114 2.2 0.5 773 0.07 2020 Sr1.01AgSb[26] 1.27 125 1.7 0.58 773 0.1 2020 EuCuSb[26] 0.64 83 2.9 0.3 773 0.03 2020 EuAgSb[26] 0.74 90 2.4 0.35 773 0.05 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110]
计量
- 文章访问数:9939
- PDF下载量:360
- 被引次数:0