搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

袁珉慧, 乐文凯, 谈小建, 帅晶

Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials

Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing
PDF
HTML
导出引用
  • 热电材料可以实现热能和电能间的直接相互转换, 在半导体制冷和热能回收方面有着重要应用. Zintl相热电材料由电负性差异较大的阴阳离子组成, 其输运特征符合“声子玻璃, 电子晶体”的概念, 因此受到了广泛的研究, 特别是具有二维共价键子结构Zintl相热电材料凭借优异的电性能更是被寄予厚望. 本文综述了具有二维共价键子结构的典型Zintl相热电材料, 梳理了研究最广且性能突出的CaAl 2Si 2结构1-2-2型、原胞内原子较多本征低热导率的9–4+ x–9型、具有天然空位而本征热导率极低的2-1-2型、以及电性能相对较好的ZrBeSi结构1-1-1型Zintl相的研究进展; 其中还特别总结了性能优异的Mg 3Sb 2基n型Zintl材料的研究发展. 本文概括总结了每种体系近年来的研究进展及性能调控方法, 讨论了进一步优化其热电性能的可能策略, 并对其未来发展进行了展望.
    Thermoelectric materials can realize the direct conversion between thermal energy and electrical energy, and thus having important applications in semiconductor refrigeration and heat recovery. Zintl phase is composed of highly electronegative cations and anions, which accords with the concept of “phonon glass, electron crystal” (PGEC). Thermoelectric properties of Zintl phase have attracted extensive interest, among which the two-dimensional (2D) covalent bond structure featured Zintl phases have received more attention for their outstanding electrical properties. In this review, Zintl phase materials with two-dimensional covalent bond substructures are reviewed, including 1-2-2-type, 9–4+ x–9-type, 2-1-2-type and 1-1-1-type Zintl phase. The 1-2-2-type Zintl phase is currently the most widely studied and best-performing Zintl material. It is worth mentioning that the maximum ZTvalue for the Mg 3Sb 2-based n-type Zintl material with the CaAl 2Si 2structure has been reported to reach 1.85, and the average ZTvalue near room temperature area also reaches 1.4. The 9–4+ x–9-type Zintl material with a mass of atoms in unit cell contributes to lower thermal conductivity thus relatively high ZTvalue. The 2-1-2-type Zintl material has extremely low thermal conductivity due to the intrinsic vacancies, which has been developing in recent years. The 1-1-1-type Zintl material with the same ZrBeSi structure as the 2-1-2-type Zintl material, shows better electrical transport performance. In sum, this review summarizes the recent progress and optimization methods of those typical Zintl phases above. Meanwhile, the future optimization and development of Zintl phase with two-dimensional covalent bond substructures are also prospected.
        通信作者:谈小建,tanxiaojian@nimte.ac.cn; 帅晶,shuaij3@mail.sysu.edu.cn
      • 基金项目:国家自然科学基金 (批准号: 52002413, 21875273)、广东省自然科学基金(批准号: 2021A1515010612)、浙江省自然科学基金杰出青年项目(批准号: LR21E020002)和中国科学院青年创新促进会(批准号: 2019298)资助的课题.
        Corresponding author:Tan Xiao-Jian,tanxiaojian@nimte.ac.cn; Shuai Jing,shuaij3@mail.sysu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 52002413, 21875273), the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515010612), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR21E020002), and Youth Innovation Promotion Association CAS (Grant No. 2019298).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

    • 时间 材料 Ρ/(mΩ·cm) S/ (μV·K–1) κ/(W·m–1·K–1) ZT T/ K ZTRT
      2005 Ca0.25Yb0.75Zn2Sb2[36] 3.7 170 1.4 0.56 773 0.08
      2007 BaZn2Sb2[38] 6.1 185 1.25 0.33 673 0.05
      2008 YbZn1.9Mn0.1Sb2[57] 1.5 150 1.6 0.65 726 0.05
      2008 EuZn2Sb2[58] 1.8 180 1.45 0.9 713 0.16
      2009 YbCd1.6Zn0.4Sb2[46] 1.66 180 1.1 1.2 650 0.2
      2010 Yb0.6Ca0.4Cd2Sb2[37] 4.4 240 0.9 0.96 700 0.14
      2010 Yb0.75Eu0.25Cd2Sb2[59] 4 240 1 0.97 650 0.18
      2010 EuZn1.8Cd0.2Sb2[47] 2 200 1.4 1.06 650 0.18
      2011 YbCd1.85Mn0.15Sb2[60] 5.7 245 0.6 1.14 650 0.17
      2012 YbMg2Bi2[39] 5 180 1.8 0.44 650 0.07
      2014 Yb0.99Zn2Sb2[61] 1.3 160 1.7 0.85 800 0.05
      2016 YbCd1.9Mg0.1Sb2[40] 3.3 230 1.02 1.08 650 0.2
      2016 Ca0.5Yb0.5Mg2Bi2[49] 2.8 187 1.08 1 873 0.1
      2016 Ca0.995Na0.005Mg2Bi1.98[54] 3 200 1.25 0.9 873 0.05
      2016 Eu0.2Yb0.2Ca0.6Mg2Bi2[8] 3.5 215 0.92 1.3 875 0.25
      2018 YbCd1.5Zn0.5Sb2[34] 1.7 172 1.2 1.26 700 0.18
      2018 Yb0.96Ba0.04Cd1.5Zn0.5Sb2[34] 2 185 0.94 1.3 700 0.18
      2019 Ba0.7975Yb0.2Na0.0025Cd2Sb2[41] 4.1 210 0.81 0.93 700 0.1
      2019 EuCd1.4Zn0.6Sb2[42] 3.5 220 1 0.96 700 0.18
      2020 Ca0.65Yb0.35Mg1.9Zn0.1Bi1.98[43] 2.63 185 1.04 1 773 0.2
      2020 YbMg2Bi1.58Sb0.4[44] 4.1 219 1 1.05 873 0.14
      2020 Sm0.25Yb0.375Eu0.375Mg2Bi1.99[45] 3.7 197 0.9 0.9 773 0.18
      2020 (Yb0.9Mg0.1)Mg0.8Zn1.198Ag0.002Sb2[21] 4.75 257 0.74 1.5 773 0.28
      下载: 导出CSV

      时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT
      2006 Mg3Sb2[83] 29 288 1.2 0.21 875 0.001
      2013 Mg3Bi0.2Sb1.8[76] 40 400 0.58 0.6 750 0.01
      2014 Mg3Pb0.2Sb1.8[48] 28.6 280 0.28 0.84 773 0.03
      2015 Mg2.9875Na0.0125Sb2[66] 5.4 200 0.95 0.6 773 0.03
      2017 Mg2.985Ag0.015Sb2[22] 9 205 0.65 0.51 725 0.08
      2016 Mg3.2Sb1.5Bi0.49Te0.01[67] 5 –286 0.79 1.51 716 0.2
      2016 Mg3Sb1.48Bi0.48Te0.04[53] 10 –205 0.73 1.6 750 0.6
      2017 Mg3.05Nb0.15Sb1.5Bi0.49Te0.01[9] 4.35 –277 0.84 1.57 700 0.31
      2017 Mg3.1Co0.1Sb1.5Bi0.49Te0.01[69] 5.1 –295 0.78 1.7 773 0.4
      2018 Mg3.15Mn0.05Sb1.5Bi0.49Te0.01[10] 4.5 –302 0.79 1.85 723 0.42
      2019 Mg3+δSb1.5Bi0.49Te0.01:Mn0.01[78] 4.5 –290 0.9 1.6 773 0.65
      2019 Mg3.05SbBi0.97Te0.03[74] 1.7 –202 0.92 1.31 500 0.71
      2019 Mg3.02Y0.02Sb1.5Bi0.5[11] 4.2 –270 0.76 1.8 773 0.2
      2020 Mg3.2Sb1.99Te0.01+GNP[23] 6.4 –320 0.74 1.7 750 0.18
      2021 Mg3.17B0.03Sb1.5Bi0.49Te0.01[12] 5.4 –296 0.69 1.81 773 0.62
      下载: 导出CSV

      时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT
      2014 Yb9Mn4.2Sb9[87] 7.9 185 0.58 0.7 950 0.035
      2015 Eu9Cd3.75Ag1.42Sb9[91] 2.0 85 1.0 0.32 750 0.03
      2016 Ca9Zn4.35Cu0.15Sb9[89] 3.0 140 0.8 0.72 873 0.1
      2017 Ca9Zn4.6Sb9[27] 11.0 270 0.48 1.1 873 0.1
      2019 Ca6.75Eu2.25Zn4.7Sb9[28] 5.55 200 0.53 1.05 773 0.21
      2021 Sr9Mg4.45Bi9[90] 3.75 135 0.65 0.57 773 0.14 (323 K)
      下载: 导出CSV

      时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m–1·K–1) ZT T/K ZTRT
      2017 Yb2CdSb2[92] 5 155 0.52 0.2 523 0.23
      2017 Yb1.64Eu0.36CdSb2[92] 3.5 170 0.6 0.7 523 0.26
      2018 Eu2ZnSb2[25] 24.4 290 0.42 0.6 723 0.14
      2018 Eu2Zn0.98Sb2[25] 8 220 0.48 1 823 0.22
      2020 Eu2Zn0.97Ag0.06Sb2[24] 10 220 0.43 0.93 823 0.2
      2020 Eu2Zn0.95Ag0.06Sb2[24] 5.3 194 0.5 1.1 823 0.2
      下载: 导出CSV

      时间 材料 ρ/(mΩ·cm) S/(μV·K–1) κ/(W·m-1·K–1) ZT T/K ZTRT
      2018 Ca0.85La0.15Ag0.89Sb[106] 1.85 120 1.3 0.52 860 0.07
      2018 Ca0.55Sr0.3La0.15Ag0.89Sb[106] 1.6 125 1.0 0.7 823 0.1
      2020 SrAgSb[26] 0.95 114 2.2 0.5 773 0.07
      2020 Sr1.01AgSb[26] 1.27 125 1.7 0.58 773 0.1
      2020 EuCuSb[26] 0.64 83 2.9 0.3 773 0.03
      2020 EuAgSb[26] 0.74 90 2.4 0.35 773 0.05
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

    • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆.熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能. 必威体育下载 , 2024, 73(10): 107201.doi:10.7498/aps.73.20240112
      [2] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英.黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 必威体育下载 , 2021, 70(20): 207101.doi:10.7498/aps.70.20211165
      [3] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程.Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 必威体育下载 , 2021, 70(15): 157401.doi:10.7498/aps.70.20202020
      [4] 刘超, 杨岳洋, 南策文, 林元华.MAX及其衍生MXene相碳化物的热电性能及展望. 必威体育下载 , 2021, 70(20): 206501.doi:10.7498/aps.70.20211050
      [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆.Cu1.8–xSbxS热电材料的相结构与电热输运性能. 必威体育下载 , 2021, 70(12): 128401.doi:10.7498/aps.70.20201852
      [6] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先.PbTe基热电接头界面性能. 必威体育下载 , 2020, 69(24): 246801.doi:10.7498/aps.69.20201080
      [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程.改善Te基热电材料与复合电极界面性能. 必威体育下载 , 2020, 69(14): 146801.doi:10.7498/aps.69.20200436
      [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东.具有本征低晶格热导率的硫化银快离子导体的热电性能. 必威体育下载 , 2019, 68(9): 090201.doi:10.7498/aps.68.20190073
      [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰.氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 必威体育下载 , 2018, 67(19): 197201.doi:10.7498/aps.67.20180382
      [10] 薛丽, 任一鸣.CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 必威体育下载 , 2016, 65(15): 156301.doi:10.7498/aps.65.156301
      [11] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林.Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 必威体育下载 , 2016, 65(6): 067201.doi:10.7498/aps.65.067201
      [12] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军.PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 必威体育下载 , 2016, 65(10): 107201.doi:10.7498/aps.65.107201
      [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林.含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 必威体育下载 , 2015, 64(19): 197201.doi:10.7498/aps.64.197201
      [14] 吴子华, 谢华清, 曾庆峰.Ag-ZnO纳米复合热电材料的制备及其性能研究. 必威体育下载 , 2013, 62(9): 097301.doi:10.7498/aps.62.097301
      [15] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋.机械合金化过程对硫化铋块体热电性能的影响机理. 必威体育下载 , 2012, 61(4): 048401.doi:10.7498/aps.61.048401
      [16] 霍凤萍, 吴荣归, 徐桂英, 牛四通.热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 必威体育下载 , 2012, 61(8): 087202.doi:10.7498/aps.61.087202
      [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民.Sb2Te3热电薄膜的离子束溅射制备与表征. 必威体育下载 , 2010, 59(2): 1243-1247.doi:10.7498/aps.59.1243
      [18] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林.Sb2Te3 纳米结构的制备与表征. 必威体育下载 , 2010, 59(10): 7232-7238.doi:10.7498/aps.59.7232
      [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰.Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 必威体育下载 , 2007, 56(6): 3473-3478.doi:10.7498/aps.56.3473
      [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波.热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 必威体育下载 , 2005, 54(7): 3321-3326.doi:10.7498/aps.54.3321
    计量
    • 文章访问数:9939
    • PDF下载量:360
    • 被引次数:0
    出版历程
    • 收稿日期:2021-05-28
    • 修回日期:2021-06-19
    • 上网日期:2021-08-15
    • 刊出日期:2021-10-20

      返回文章
      返回
        Baidu
        map