-
量子人工智能是一个探究人工智能与量子物理交叉的领域: 一方面人工智能的方法和技术可以用来解决量子科学中的问题; 另一方面, 量子计算的发展也可能为人工智能, 尤其是机器学习, 提供新的范式, 极大促进人工智能的发展. 然而, 量子机器学习和经典学习系统对于对抗样本同样具有脆弱性: 在原始数据样本上添加精心制作的微小扰动将很可能导致系统做出错误的预测. 本文介绍经典与量子对抗机器学习的基本概念、原理、以及最新进展. 首先从经典和量子两个方面介绍对抗学习, 通过二维经典伊辛模型和三维手征拓扑绝缘体的对抗样本揭示出经典机器学习在识别物质相时的脆弱性, 同时利用手写字体的对抗样本直观展示出量子分类器的脆弱性. 随后从理论层面上分别阐述经典与量子的“没有免费午餐”定理, 并探讨了量子分类器的普适对抗样本. 最后, 分析并讨论了相应的防御策略. 量子人工智能中对抗学习的研究揭示了量子智能系统潜在的风险以及可能的防御策略, 将对未来量子技术与人工智能的交叉产生深刻影响.Quantum artificial intelligence exploits the interplay between artificial intelligence and quantum physics: on the one hand, a plethora of tools and ideas from artificial intelligence can be adopted to tackle intricate quantum problems; on the other hand, quantum computing could also bring unprecedented opportunities to enhance, speed up, or innovate artificial intelligence. Yet, quantum learning systems, similar to classical ones, may also suffer adversarial attacks: adding a tiny carefully-crafted perturbation to the legitimate input data would cause the systems to make incorrect predictions at a notably high confidence level. In this paper, we introduce the basic concepts and ideas of classical and quantum adversarial learning, as well as some recent advances along this line. First, we introduce the basics of both classical and quantum adversarial learning. Through concrete examples, involving classifications of phases of two-dimensional Ising model and three-dimensional chiral topological insulators, we reveal the vulnerability of classical machine learning phases of matter. In addition, we demonstrate the vulnerability of quantum classifiers with the example of classifying hand-written digit images. We theoretically elucidate the celebrated no free lunch theorem from the classical and quantum perspectives, and discuss the universality properties of adversarial attacks in quantum classifiers. Finally, we discuss the possible defense strategies. The study of adversarial learning in quantum artificial intelligence uncovers notable potential risks for quantum intelligence systems, which would have far-reaching consequences for the future interactions between the two areas.
-
Keywords:
- quantum artificial intelligence/
- quantum adversarial learning/
- quantum classifiers/
- topological phases of mater
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99]
计量
- 文章访问数:8771
- PDF下载量:567
- 被引次数:0