搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

唐家栋, 刘乾昊, 程存峰, 胡水明

Hyperfine structure of ro-vibrational transition of HD in magnetic field

Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming
PDF
HTML
导出引用
  • HD分子红外跃迁的精密测量被用以检验量子电动力学、确定质子-电子质量比等. 但HD分子的超精细结构分裂对于测量精度是一个很重要的限制因素, 并可能是实验中测得 ν= 2—0谱带跃迁呈特殊线型的原因之一. 本文分别在耦合表象和非耦合表象下计算了HD分子振转跃迁的超精细结构, 并计算了不同外加磁场下HD分子(2–0)带中R(0), P(1), R(1)线的超精细结构, 模拟了10 K低温下对应的光谱结构. 结果表明, HD分子跃迁结构可随磁场发生明显变化. 这可能有助于分析HD分子跃迁特异线型产生的机制, 进一步获得其准确的跃迁中心频率, 用于基础物理学检验.
    The precise measurement of the infrared transition of hydrogen-deuterium (HD) molecule is used to test quantum electrodynamics and determine the proton-to-electron mass ratio. The saturated absorption spectrum of the R(1) line in the first overtone (2–0) band of HD molecule has been measured by the comb locked cavity ring-down spectroscopy (CRDS) method in Hefei [Tao L G, et al. 2018 Phys. Rev. Lett. 120153001 ], and also by the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) method in Amsterdam [Cozijn F M J, et al. 2018 Phys. Rev. Lett. 120153002 ]. However, there is a significant difference between the line center positions obtained in these two studies. Later the discrepancy was found to be due to unexpected asymmetry in the line shape of the saturated absorption spectrum of the HD molecule. A possible reason is the superposition of multiple hyperfine splitting peaks in the saturated spectrum. However, this model strongly depends on the population transfer caused by intermolecular collisions, which is a lack of experimental and theoretical support. In this paper, the hyperfine structures of the ro-vibrational transition of HD are calculated in the coupled and uncoupled representations. The hyperfine structures of the R(0), P(1) and R(1) lines in the (2–0) band of HD molecule under different external magnetic fields are calculated. The corresponding spectral structures at a temperature of 10 K are simulated. The results show that the transition structure of HD molecule changes significantly with the externally applied magnetic field. The frequency shift of each hyperfine transition line also increases with the intensity of external magnetic field increasing. When the intensity of the external magnetic field is sufficiently high, the hyperfine lines are clearly divided into two branches, and they can be completely separated from each other. Because the dynamic effect of intermolecular collision and the energy level population transfer are very sensitive to the energy level structure, the comparison between experiment and theory will help us to analyze the mechanism of the observed special profiles. It will allow us to obtain accurate frequencies of these transitions, which can be used for testing the fundamental physics.
        通信作者:胡水明,smhu@ustc.edu.cn
      • 基金项目:中国科学院战略性先导科技专项(B类)(批准号: XDB21020100)和国家自然科学基金(批准号: 21688102)资助的课题
        Corresponding author:Hu Shui-Ming,smhu@ustc.edu.cn
      • Funds:Project supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB21020100) and the National Natural Science Foundation of China (Grant No. 21688102)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

    • 跃迁线 0 G 100 G 300 G 1000 G
      频率偏移/kHz 相对强度 频率偏移/kHz 相对强度 频率偏移/kHz 相对强度 频率偏移/kHz 相对强度
      Δm= + 1 a→A –56.3 0.3333 –106.9 0.3333 –208.0 0.3333 –561.9 0.3333
      b1→B1 –56.3 0.0000 –100.6 0.1800 –216.4 0.1157 –656.9 0.0197
      b1→B2 –1.4 0.2922 –33.3 0.1533 –146.5 0.2176 –516.3 0.3136
      b1→B3 53.3 0.0411 323.4 0.0000 940.3 0.0000 3108.3 0.0000
      b2→B1 –56.3 0.2000 –461.0 0.0019 –1297.6 0.0003 –4261.1 0.0000
      b2→B2 –1.4 0.0164 –393.7 0.0018 –1227.7 0.0001 –4120.5 0.0000
      b2→B3 53.3 0.1169 –37.0 0.3297 –141.0 0.3329 –495.9 0.3333
      c1→C1 –114.1 0.1439 –165.4 0.1619 –286.0 0.1273 –776.7 0.0315
      c1→C2 –56.3 0.0000 –93.4 0.0640 –222.5 0.0372 –699.2 0.0029
      c1→C3 –1.4 0.0974 –2.2 0.1070 –129.5 0.1688 –528.6 0.2990
      c1→C4 53.3 0.0137 298.6 0.0000 893.3 0.0000 2972.7 0.0000
      c1→C5 179.3 0.0783 432.1 0.0004 1032.2 0.0000 3181.2 0.0000
      c2→C1 –114.1 0.0196 –525.8 0.0018 –1367.3 0.0004 –4380.9 0.0000
      c2→C2 –56.3 0.1000 –453.8 0.0025 –1303.8 0.0002 –4303.5 0.0000
      c2→C3 –1.4 0.0219 –362.6 0.0015 –1210.8 0.0003 –4132.8 0.0000
      c2→C4 53.3 0.1559 –61.9 0.1248 –188.0 0.0859 –631.6 0.0292
      c2→C5 179.3 0.0360 71.7 0.2028 –49.1 0.2465 –423.0 0.3040
      d→D1 –114.1 0.0587 –445.7 0.0018 –1309.3 0.0001 –4366.4 0.0000
      d→D2 –56.3 0.0333 –353.7 0.0170 –1198.0 0.0018 –4198.3 0.0002
      d→D3 –1.4 0.0164 –163.3 0.0232 –321.7 0.0236 –867.0 0.0083
      d→D4 53.3 0.1169 –84.8 0.0197 –223.8 0.0063 –690.0 0.0002
      d→D5 179.3 0.1079 45.6 0.2716 –73.9 0.3015 –442.1 0.3247
      Δm=–1 a→C1 –114.1 0.0587 –34.7 0.0616 106.1 0.0884 530.4 0.2835
      a→C2 –56.3 0.0333 37.3 0.0446 169.6 0.0865 607.9 0.0249
      a→C3 –1.4 0.0164 128.5 0.2139 262.6 0.1567 778.5 0.0248
      a→C4 53.3 0.1169 429.2 0.0046 1285.4 0.0006 4279.8 0.0001
      a→C5 179.3 0.1079 562.8 0.0086 1424.3 0.0011 4488.3 0.0001
      b1→D1 –114.1 0.1439 45.5 0.1473 164.2 0.1950 545.0 0.2888
      b1→D2 –56.3 0.0000 137.5 0.1648 275.5 0.1368 713.1 0.0444
      b1→D3 –1.4 0.0974 327.9 0.0085 1151.7 0.0003 4044.4 0.0000
      b1→D4 53.3 0.0137 406.4 0.0081 1249.6 0.0008 4221.4 0.0001
      b1→D5 179.3 0.0783 536.8 0.0045 1399.5 0.0004 4469.3 0.0000
      b2→D1 –114.1 0.0196 –314.9 0.0001 –917.1 0.0000 –3059.2 0.0000
      b2→D2 –56.3 0.1000 –222.9 0.0021 –805.8 0.0000 –2891.1 0.0000
      b2→D3 –1.4 0.0219 –32.5 0.2496 70.4 0.2653 440.2 0.3123
      b2→D4 53.3 0.1559 46.0 0.0372 168.4 0.0383 617.2 0.0125
      b2→D5 179.3 0.0360 176.4 0.0442 318.3 0.0297 865.2 0.0085
      c1→E1 –56.3 0.0000 55.2 0.3291 159.4 0.3329 514.4 0.3333
      c1→E2 –1.4 0.2922 375.0 0.0019 1201.0 0.0001 4084.7 0.0000
      c1→E3 53.3 0.0411 452.7 0.0023 1297.2 0.0003 4269.7 0.0000
      c2→E1 –56.3 0.2000 –305.3 0.0003 –921.9 0.0000 –3089.9 0.0000
      c2→E2 –1.4 0.0164 14.6 0.2593 119.7 0.2884 480.5 0.3223
      c2→E3 53.3 0.1169 92.3 0.0737 215.9 0.0450 665.5 0.0110
      d→F –56.3 0.3333 –5.8 0.3333 95.3 0.3333 449.3 0.3333
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

    • [1] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国.类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 必威体育下载 , 2023, 72(22): 223101.doi:10.7498/aps.72.20230940
      [2] 陈润, 邵旭萍, 黄云霞, 杨晓华.BrF分子电磁偶极跃迁转动超精细微波谱模拟. 必威体育下载 , 2023, 72(4): 043301.doi:10.7498/aps.72.20221957
      [3] 张祥, 卢本全, 李冀光, 邹宏新.Hg+离子5d106s2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 必威体育下载 , 2019, 68(4): 043101.doi:10.7498/aps.68.20182136
      [4] 陈展斌, 董晨钟.超精细结构效应对辐射光谱圆极化特性的影响. 必威体育下载 , 2018, 67(19): 193401.doi:10.7498/aps.67.20180322
      [5] 李明, 姚宁, 冯志波, 韩红培, 赵正印.外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响. 必威体育下载 , 2018, 67(5): 057101.doi:10.7498/aps.67.20172213
      [6] 裴栋梁, 何军, 王杰英, 王家超, 王军民.铯原子里德伯态精细结构测量. 必威体育下载 , 2017, 66(19): 193701.doi:10.7498/aps.66.193701
      [7] 任雅娜, 杨保东, 王杰, 杨光, 王军民.铯原子7S1/2态磁偶极超精细常数的测量. 必威体育下载 , 2016, 65(7): 073103.doi:10.7498/aps.65.073103
      [8] 李楠, 黄凯凯, 陆璇辉.提高激光抽运铯原子磁力仪灵敏度的研究. 必威体育下载 , 2013, 62(13): 133201.doi:10.7498/aps.62.133201
      [9] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军.近三相点温度低温固体氘的红外吸收谱. 必威体育下载 , 2013, 62(16): 163301.doi:10.7498/aps.62.163301
      [10] 李晓莉, 张连水, 孙江, 冯晓敏.微波驱动精细结构能级跃迁引起的电磁诱导负折射效应. 必威体育下载 , 2012, 61(4): 044202.doi:10.7498/aps.61.044202
      [11] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏.利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 必威体育下载 , 2011, 60(10): 103201.doi:10.7498/aps.60.103201
      [12] 杨保东, 高静, 王杰, 张天才, 王军民.铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 必威体育下载 , 2011, 60(11): 114207.doi:10.7498/aps.60.114207
      [13] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强.全光学高灵敏度铷原子磁力仪的研究. 必威体育下载 , 2010, 59(2): 877-882.doi:10.7498/aps.59.877
      [14] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙.磁场作用下的有机电致发光. 必威体育下载 , 2009, 58(10): 7272-7277.doi:10.7498/aps.58.7272
      [15] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃.单晶LiNbO3:Mn2+的ESR谱研究. 必威体育下载 , 2005, 54(1): 373-378.doi:10.7498/aps.54.373
      [16] 陈岁元, 刘常升, 李慧莉, 崔 彤.非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 必威体育下载 , 2005, 54(9): 4157-4163.doi:10.7498/aps.54.4157
      [17] 王立军, 余慧莺.窄带激光与能级具有超精细结构的二能级原子的相干激发. 必威体育下载 , 2004, 53(12): 4151-4156.doi:10.7498/aps.53.4151
      [18] 马洪良, 陆 江, 王春涛.141Pr+波长56908 nm谱线超精细结构测量. 必威体育下载 , 2003, 52(3): 566-569.doi:10.7498/aps.52.566
      [19] 赵鹭明, 王立军.超精细结构对激光与二能级原子相互作用的影响. 必威体育下载 , 2002, 51(6): 1227-1232.doi:10.7498/aps.51.1227
      [20] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家.LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 必威体育下载 , 2000, 49(7): 1256-1259.doi:10.7498/aps.49.1256
    计量
    • 文章访问数:5003
    • PDF下载量:186
    • 被引次数:0
    出版历程
    • 收稿日期:2021-03-16
    • 修回日期:2021-04-15
    • 上网日期:2021-06-07
    • 刊出日期:2021-09-05

      返回文章
      返回
        Baidu
        map