-
在具有自旋-轨道耦合效应的材料中, 电荷流能够诱导产生垂直于电流方向的纯自旋流, 当其注入近邻的磁性层时, 会对其磁矩产生自旋-轨道矩. 自旋-轨道矩能够快速、高效地翻转磁矩, 为开发高性能的自旋电子器件提供了一种极佳的磁矩操控方式. 二维材料由于具有很多的优点, 如种类丰富、具有多样化的晶体结构和对称性、能够克服晶格失配形成高质量的异质结、具有强自旋-轨道耦合、电导率可调等, 为研究自旋-轨道矩提供了独特的平台, 因此引起了人们的广泛关注. 本文涵盖了近年来与二维材料及其异质结构中自旋-轨道矩研究相关的最新进展, 主要包括了基于非磁性二维材料(如MoS 2, WSe 2, WS 2, WTe 2, TaTe 2, MoTe 2, NbSe 2, PtTe 2, TaS 2等)和磁性二维材料(如Fe 3GeTe 2, Cr 2Ge 2Te 6等)的异质结中自旋-轨道矩的产生、表征和对磁矩的操控等. 最后指出了目前研究中尚未解决的问题与挑战.The spin-orbit torque generated by charge current in a strong spin-orbit coupling material provides a fast and efficient way to manipulate the magnetic moment in adjacent magnetic layers, which is expected to be used for developing low-power, high-performance spintronic devices. Two-dimensional materials have attracted great attention, for example, they have abundant species, a variety of crystal structures and symmetries, good adjustability of spin-orbit coupling strength and conductivity, and good ability to overcome the lattice mismatch to form high-quality heterojunctions, thereby providing a unique platform for studying the spin-orbit torques. This paper covers the latest research progress of spin-orbital torques in two-dimensional materials and their heterostructures, including their generations, characteristics, and magnetization manipulations in the heterostructures based on non-magnetic two-dimensional materials (such as MoS 2, WSe 2, WS 2, WTe 2, TaTe 2, MoTe 2, NbSe 2, PtTe 2, TaS 2, etc.) and magnetic two-dimensional materials (such as Fe 3GeTe 2, Cr 2Ge 2Te 6, etc.). Finally, some problems remaining to be solved and challenges are pointed out, and the possible research directions and potential applications of two-dimensional material spin-orbit torque are also proposed.
-
Keywords:
- two-dimensional materials/
- spin-orbit coupling/
- spin-orbit torque/
- current-driven magnetization switching
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] -
TMD材料 空间群 制备方法 表征方法 自旋霍尔电导$/[{10}^{3}({\hbar /2{\rm{e}}} )$ (Ω·m)–1] 文献 MoS2 P6/mmc CVD SHH $ {\sigma }_{\rm{A}}= $ 2.9 [60] WSe2 P6/mmc CVD SHH $ {\sigma }_{\rm{A}}= $ 5.5 [60] WS2 P6/mmc CVD SHH $ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $ observed [61] WTe2 Pmn21 Exfoliation ST-FMR/SHH $ {\sigma }_{\rm{A}}= $ 9 ± 3, $ {\sigma }_{\rm{S}}= $ 8 ± 2, $ {\sigma }_{\rm{B}}= $ 3.6 ± 0.8 [58] WTe2 Pmn21 Exfoliation ST-FMR/SHH $ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed [62] TaTe2 C2/m Exfoliation ST-FMR/SHH $ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed [64] MoTe2 P21/m Exfoliation ST-FMR ${\sigma }_{\rm{S} }=4.4 —8.0,$ ${\sigma }_{\rm{B} }=0.04—1.6,$ ${\sigma }_{\rm{T} }=0.026—1.0$ [65] NbSe2 P63/mmc Exfoliation ST-FMR ${\sigma }_{\rm{A} }=0— 40,$ ${\sigma }_{\rm{S} }=0— 13,$ ${\sigma }_{\rm{T} }=- 2—3.5$ [66] PtTe2 — CVD ST-FMR ${\sigma }_{\rm{S} }=0.20—1.6\times {10}^{2}$ [68] TaS2 — Ion-beam sputtering ST-FMR/SHH $ {\sigma }_{\rm{S}}=14.9\times {10}^{2} $ [69] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110]
计量
- 文章访问数:13907
- PDF下载量:1431
- 被引次数:0