-
二维磁性材料是二维材料家族的新成员, 其在单原胞层厚度依然保持长程磁序且易受外场调控, 这为二维极限下的磁性以及其他新奇物理效应的研究提供了理想的平台, 又为低功耗自旋电子学/磁存储器件的研制开辟了新的途径, 成为国际上备受关注的前沿热点. 本综述首先系统介绍了近年来发现的各类本征二维磁性材料的晶体结构、磁结构以及磁性能, 并讨论了由磁场、电场、静电掺杂、离子插层、堆叠方式、应变、界面等外场调控二维磁性材料磁性能的研究进展, 最后进行总结并展望了二维磁性材料未来发展的研究方向. 深入理解二维磁性材料磁性的起源和机理、研究其磁性能与微观结构之间的关联, 为寻找具有更高居里温度(奈尔温度)的磁性材料、设计多功能的新概念器件具有重要意义.The recently discovered two-dimensional magnetic materials have attracted tremendous attention and become a cutting-edge research topic due to their long-range magnetic ordering at a single-unit-cell thickness, which not only provide an ideal platform for studying the magnetism in the two-dimensional limit and other novel physical effects, but also open up a new way to develop low-power spintronics/magnetic storage devices. In this review, first, we introduce the crystal structures, magnetic structures and magnetic properties of various recently discovered intrinsic two-dimensional magnetic materials. Second, we discuss the research progress of controlling the magnetic properties of two-dimensional magnetic materials by magnetic field, electric field, electrostatic doping, ion intercalation, stacking, strain, interface, etc. Finally, we give a perspective of possible research directions of the two-dimensional magnetic materials. We believe that an in-depth understanding of the origin and mechanism of magnetism of the two-dimensional magnetic materials as well as the study of the relationship between magnetic properties and microstructures are of great significance in exploring a magnetic material with a substantially high Curie temperature (Néel temperature), and designing multifunctional new concept devices.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] -
材料类别 材料 磁耦合 磁转变温度TN/Tc 描述模型 带隙/eV 参考文献 过渡金属
卤化物CrCl3 A-type AFM 1L: 10 K/Tc
2L: 16 K/TN
Bulk: 17 K/TN//XY 3.0 [44,46,47] CrBr3 FM 1L: 27 K/Tc
2L: 36 K/Tc
Bulk: 37 K/Tc⊥between Isingand Heisenberg 2.2 [44,45,47] CrI3 A-type AFM/Few L 1L: 45 K/Tc
2L: 45 K/TN
Few L: 46 K/TN⊥Ising 1.2 [44,45,47,48] FM/Bulk Bulk: 61 K/Tc 1T-FeCl2 A-type AFM/Bulk Bulk: 24 K/TN ⊥ [44] FM/1L 1L: 109 K/Tc ⊥Heisenberg Semimetal [55] 1T-FeBr2 A-type AFM/Bulk Bulk: 14 K/TN ⊥ [44] FM/1L 1L: 81 K/Tc ⊥Heisenberg Semimetal [55] 1T-FeI2 Intralayer AF-stripy/Bulk Bulk: 9 K/TN ⊥ [44] FM/1L 1L: 42 K/Tc ⊥Heisenberg Semimetal [55] 1T-CoCl2 AFM/Bulk Bulk: 25 K/TN // [44] FM/1L 1L: 85 K/Tc Heisenberg [55] 1T-CoBr2 A-type AFM/Bulk Bulk: 19 K/TN // [44] FM/1L 1L: 23 K/Tc Heisenberg [55] 1T-CoI2 AFM Bulk: 11 K/TN [44] NiI2 A-type AFM 2.0 nm: 35 K/TN
Bulk: 75 K/TN1.11/1L
1.23/Bulk[29] 过渡金属
硫化物CrSe# FM Bulk: 280 K/Tc [21] CrTe2# FM Bulk: 310 K/Tc 0 [97] CrTe FM 11 nm: 140 K/Tc
45 nm: 205 K/Tc⊥ 0 [19] Cr2Te3 FM 5 nm: 280 K/Tc
40.3 nm: 170 K/Tc⊥ 0 [57] FeTe (hexagonal) FM 4 nm: 170 K/Tc
Bulk: 220 K/TcHeisenberg [20] ${\rm MnSe}_x{}^*$ FM/1L 1L: > 300 K/Tc ⊥ 3.39 [61] AFM/Bulk 1T-VSe2* FM/1L 1L: > 300 K (470 K)/Tc // 0 [22,60] 2H-VSe2 A-type AFM // Semimetal [98] V5S8 FM/3.2 nm 3.2 nm: 2 K/Tc ⊥ 0 [99] AFM/Bulk Bulk: 32 K/TN FeTe (tetragonal) AFM-Néel 5 nm: 45 K/TN
Bulk: 70 K/TNHeisenberg [20] Cr2S3 FM 15 nm: 120 K/Tc
45 nm: 300 K/Tc[59] Cr2O3# AFM Bulk: 307 K/TN ⊥ 3.5 [100,101] 过渡金属磷
化合物FePS3 Intralayer AF-zigzag, interlayer FM 1L: 118 K/TN
Bulk: 118 K/TN⊥Ising 1.5 [30,65,72] NiPS3 Intralayer AF-zigzag, interlayer FM 2L: 130 K/TN
Bulk: 150 K/TN// XY 1.6 [31,65,67] MnPS3 Intralayer AF-Néel, interlayer FM Bulk: 78 K/TN // Heisenberg 2.4 [65,68,71] CoPS3 Intralayer AF-zigzag, interlayer FM Bulk: 120 K/TN // XY [66] MnPSe3 Intralayer AF-zigzag, interlayer FM 5L: 70 K/TN
Bulk: 70 K/TN// XY 2.3 [32] FePSe3# Intralayer AF-zigzag, interlayer FM Bulk: 119 K/TN ⊥Ising 1.3 [73,74] CrPS4 A-type AFM Bulk: 36 K/TN ⊥ 1.3 [75,76,102] FM/1L 1L: 50 K/Tc ⊥ 2.28 [77] 过渡金属锗
碲化合物Cr2Si2Te6 FM 1L: 80 K/Tc
Bulk: 31 K/Tc⊥Ising 1.2 [80,81,103] Cr2Ge2Te6 FM 2L: 28 K/Tc
3L: 35 K/Tc
Bulk: 61 K/Tc⊥Heisenberg 0.45 [17,80] Fe3GeTe2 FM 1L (onAl2O3): 20 K/Tc
1L (on Au): 130 K/Tc
Bulk: 220—230 K/Tc⊥Ising 0 [38,82] Fe5GeTe2 FM 12 nm: 270—300 K/Tc
Bulk: 310 K/Tc⊥ 0 [26] 过渡金属铋
碲化合物MnBi2Te4 A-type AFM 3SL: 18 K/TN
4SL: 21 K/TN
Bulk: 25 K/TN⊥Heisenberg [84,85] MnBi4Te7 A-type AFM Bulk: 13 K/TN ⊥ [89] MnBi6Te10 A-type AFM Bulk: 11 K/TN ⊥ [89] VBi2Te4 A-type AFM // [90,104] NiBi2Te4 A-type AFM // [90] EuBi2Te4 A-type AFM // [90] 过渡金属氧
卤化物FeOCl AFM 2.0—2.4 nm: 14 K/TN
Bulk: 84—92 K/TN[34] CrOCl FM/1L 1L: 160 K/Tc ⊥Ising 2.38 [91] AFM Bulk: 13.5 K/TN ⊥ 2.31 [96] CrSBr FM/1L 1L: 160 K/Tc //Heisenberg 0.757 [93] CrSCl FM/1L 1L: 150 K/Tc // Heisenberg 0.856 [93] CrSI FM/1L 1L: 170 K/Tc // Heisenberg 0.473 [93] 注: 绿色背底表示为实验中发现的铁磁材料, 橙色背底表示为实验中发现的反铁磁材料, 灰色背底表示为理论预测的铁磁或反铁磁材料; 上标#为体相材料, 其单层磁性在实验中还未发现; 上标*为磁性是否为本征磁性尚未确定的磁性材料; ⊥表示易磁化轴垂直于平面(ab), ∥表示易磁化轴平行于平面(ab). -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124]
计量
- 文章访问数:24941
- PDF下载量:2269
- 被引次数:0