搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

王闯, 鲍容容, 潘曹峰

Research and application of flexible wearable electronics based on nanogenerator in touch sensor

Wang Chuang, Bao Rong-Rong, Pan Cao-Feng
PDF
HTML
导出引用
  • 柔性可穿戴电子设备因其在人工智能、健康医疗等领域的应用而受到了人们的极大关注. 然而, 如何降低功耗或实现自供能一直是阻碍其广泛应用的瓶颈. 随着纳米发电机与自驱动技术的兴起, 尤其以摩擦纳米发电机(TENG)与压电纳米发电机(PENG)代表的研究, 为解决可穿戴传感器电源的问题提供了可行的方案. TENG和PENG分别基于摩擦起电效应与压电效应, 可以将机械能转化为电能, 同时具备可拉伸性、生物相容性和自愈性等优良特性, 已经广泛应用于自驱动的触觉传感器的设计制备中, 并作为下一代可穿戴电子设备的技术基础展现出巨大的应用潜力. 基于该领域的最新进展, 本文对TENG与PENG的机理进行概述, 对其性能优化途径进行归纳, 再结合材料、器件的设计等讨论应力应变与分布、滑移等纳米发电机自驱动传感器的制备与应用研究. 最后, 对自驱动触觉传感器目前存在的问题与挑战进行讨论, 并对未来的发展进行展望.
    With the advance of the fourth industrial revolution, a wave of emerging industries and interdisciplinary research is breaking out, such as the Internet of Things, megadata, humanoid robots and artificial intelligence.The rapid development of these functional electronic devices is changing the way people communicate with each other and their surroundings, thus integrating our world into an intelligent information network. The applications of flexible wearable electronic devices in intelligent robots, health and medical monitoring and other fields have attracted great attention. Following the human skin, the device can respond to external stimuli and should also have stretchability and self-healing properties. In practical applications, a large network of sensors is needed to connect with humans or robots, so the supply of energy is crucial. Several forms of green and renewable energy have been searched for, such as magnetic energy, solar energy, thermal energy, mechanical energy and microbial chemical energy. However, high cost, limitations in the choice of materials, and other disadvantages have become serious bottlenecks. The advent of nanogenerator brings a novel and effective solution to the above problems. Here in this work, the triboelectronic nanogenerator (TENG) and the piezoelectric generator (PENG) are taken as two representative objectives, which are, respectively, based on the triboelectronic effect and piezoelectronic effect to realize the collection of mechanical energy, and each of them can be used as a self-power sensor, which can generate electrical signals, respond to environmental stimuli, and need no power supply any more. The optimization and design of nanogenerator is always a key factor to improve its performance and wide application. At present, the methods commonly adopted in optimization schemes mainly include material selection, design and optimization of structural layer and electrode. The selection of materials should be based on low cost, stretchability, transparency, stability and biocompatibility. Firstly, for the optimization of structural layer, there are mainly two ways of designing the materials, one is the microstructure of the material surface, and the other is the functionalization of materials.The performance of the nanogenerator is proportional to the charge density of the contact surface. The square of the charge density is the main parameter to quantify the performance of the nanogenerator. Therefore, increasing the charge generation has been the main strategy to improve the output power. The microstructure of materials can be realized by means of colloidal arrays, soft lithography, block copolymer components and surface nanomaterial manufacturing. The same materials can be functionalized by ion doping, plasma treatment, electrical polarization, laser induction, and the formation of nanocomposites. In practical application, more attention is paid to the electrode with excellent performance which can simplify device structure, improve device performance and expand application field. The design of the electrode more focuses on the features such as flexibility, stretchability, high transparency and excellent electrical conductivity. The touch sensors based on TENG and PENG such as pressure sensors, strain sensors, pressure distribution sensors and slip sensors have shown excellent performances in application. Self-powered pressure sensors are used most widely because they are highly sensitive to and can detect the subtle pressure changes such as respiratory or arterial pulse-related changes. Strain sensors can detect signals produced by the body during mechanical movements, such as walking and joint movements. Pressure distribution sensor and slip distribution sensor play a key role in touch screen and smart prosthesis and so on. In this article, first, we introduce the mechanism of TENG and PENG, and summarize the way of performing the optimization design of the nanogenerators. Then, we discuss the self-powered sensors based on the nanogenerators such as stress, strain and distribution and slip sensors by combining the marerials and the design of device. Finally, the problems and challenges of the tactile sensor based on the nanogenerators are discussed, and the future development is prospected.
        通信作者:鲍容容,baorongrong@binn.cas.cn; 潘曹峰,cfpan@binn.cas.cn
      • 基金项目:国家自然科学基金(批准号: U20A20166, 61675027, 61805015, 61804011)、科技部重点研发专项(批准号: 2016YFA0202703)、北京市自然科学基金(批准号: Z180011)和深圳市科技计划项目(批准号: KQTD20170810105439418)
        Corresponding author:Bao Rong-Rong,baorongrong@binn.cas.cn; Pan Cao-Feng,cfpan@binn.cas.cn
      • Funds:Project support by the National Natural Science Foundation of China (Grant Nos. U20A20166, 61675027, 61805015, 61804011), the National Key R & D Project From Minister of Science and Technology, China (Grant No. 2016YFA0202703), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the Shenzhen Science and Technology Program, China (Grant No. KQTD20170810105439418)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

    • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞.面向高性能摩擦纳米发电机的电介质材料. 必威体育下载 , 2024, 73(7): 070702.doi:10.7498/aps.73.20240150
      [2] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰.基于纳米传感器矩阵的混合气体组分探测与识别. 必威体育下载 , 2022, 71(18): 180702.doi:10.7498/aps.71.20220955
      [3] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢.基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 必威体育下载 , 2022, 71(1): 017301.doi:10.7498/aps.71.20211420
      [4] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽.钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 必威体育下载 , 2022, 71(7): 077701.doi:10.7498/aps.71.20212022
      [5] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务.通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 必威体育下载 , 2022, 71(7): 078702.doi:10.7498/aps.71.20211632
      [6] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢.基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211420
      [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑.基于流体模型的碳纳米管电离式传感器的结构优化方法. 必威体育下载 , 2021, 70(9): 090701.doi:10.7498/aps.70.20201828
      [8] 李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰.柔性压阻式压力传感器的研究进展. 必威体育下载 , 2021, 70(10): 100703.doi:10.7498/aps.70.20210023
      [9] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强.基于变化静电场的非接触式摩擦纳米发电机设计与研究. 必威体育下载 , 2020, 69(23): 230201.doi:10.7498/aps.69.20201052
      [10] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博.基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 必威体育下载 , 2020, 69(5): 058101.doi:10.7498/aps.69.20191390
      [11] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹.蚕丝基可穿戴传感器的研究进展. 必威体育下载 , 2020, 69(17): 178703.doi:10.7498/aps.69.20200818
      [12] 申茂良, 张岩.基于压电纳米发电机的柔性传感与能量存储器件. 必威体育下载 , 2020, 69(17): 170701.doi:10.7498/aps.69.20200784
      [13] 钟婷婷, 吴梦昊.二维层间滑移铁电研究进展. 必威体育下载 , 2020, 69(21): 217707.doi:10.7498/aps.69.20201432
      [14] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威.辐射对称金字塔型剪纸的力学行为. 必威体育下载 , 2020, 69(9): 096102.doi:10.7498/aps.69.20200112
      [15] 丁亚飞, 陈翔宇.基于摩擦纳米发电机的可穿戴能源器件. 必威体育下载 , 2020, 69(17): 170202.doi:10.7498/aps.69.20200867
      [16] 谈溥川, 赵超超, 樊瑜波, 李舟.自驱动柔性生物医学传感器的研究进展. 必威体育下载 , 2020, 69(17): 178704.doi:10.7498/aps.69.20201012
      [17] 侯星宇, 郭传飞.柔性压力传感器的原理及应用. 必威体育下载 , 2020, 69(17): 178102.doi:10.7498/aps.69.20200987
      [18] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇.收集振动能的摩擦纳米发电机设计与输出性能. 必威体育下载 , 2019, 68(19): 190201.doi:10.7498/aps.68.20190806
      [19] 张艳艳, 饶长辉, 李梅, 马晓燠.基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 必威体育下载 , 2010, 59(8): 5904-5913.doi:10.7498/aps.59.5904
      [20] 陈茂康.一种脈流发电机之初记. 必威体育下载 , 1933, 1(1): 87-90.doi:10.7498/aps.1.87
    计量
    • 文章访问数:9901
    • PDF下载量:370
    • 被引次数:0
    出版历程
    • 收稿日期:2020-12-18
    • 修回日期:2021-01-21
    • 上网日期:2021-05-17
    • 刊出日期:2021-05-20

      返回文章
      返回
        Baidu
        map