搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏

Atomic spin and phonon coupling mechanism of nitrogen-vacancy center

Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min
PDF
HTML
导出引用
  • 金刚石氮-空位色心结构因在量子精密测量领域的高灵敏度优势而备受关注. 本文引入耦合声子场对氮-空位色心原子自旋进行共振调控, 以提高氮-空位色心的自旋跃迁效率. 首先, 基于波函数和晶格的点阵位移矢量关系, 分析了声子与晶格能量交互作用, 研究了基于声子共振调控的氮-空位色心的自旋跃迁机理, 建立了基于应变诱导的能量转移声子-自旋交互耦合激发模型. 其次, 基于氮-空位色心晶格振动理论, 引入满足布洛赫定理的系数矩阵, 建立了不同轴向氮-空位色心第一布里渊区特征区域的声子谱模型. 同时, 基于德拜模型, 考虑热膨胀效应, 解析该声子共振系统的声子热平衡性质, 并对其比热模型进行研究. 最后, 基于分子动力学仿真软件CASTEP和密度泛函理论进行第一性原理研究, 构建了声子模式下不同轴向氮-空位色心的结构优化模型, 并分析了其结构特性、声子特性和热力学特性. 研究结果表明, 系统声子模式的演化依赖于氮-空位的占位, 声子模式强化伴随着热力学熵的降低. 含氮-空位色心金刚石的共价键较纯净无缺陷金刚石更弱, 热力学性质更不稳定. 含氮-空位色心金刚石的声子主共振频段处于THz量级, 次共振频率约为[800,1200] MHz. 根据次共振频段设计叉指宽度为1.5 μm的声表面波共振机构, 其中心频率约为930 MHz. 在该声子共振调控参数条件下, 声子共振调控方法可有效增大氮-空位色心的自旋跃迁概率, 实现氮-空位色心原子自旋操控效率的提高.
    The nitrogen-vacancy center structure of diamond has attracted widespread attention due to its high sensitivity in quantum precision measurement. In this paper, a coupled phonon field is used to resonantly regulate the atomic spins of the nitrogen-vacancy center for improving the spin transition efficiency. Firstly, the interaction between phonons and lattice energy is analyzed based on the relationship between the wave function and the lattice displacement vector. The spin transition mechanism is investigated based on phonon resonance regulation, and the strain-induced energy transferable phonon-spin interaction coupling excitation model is established. Secondly, the coefficient matrix satisfying Bloch’s theorem is adopted to develop the phonon spectrum model of the first Brillouin zone characteristic region for different axial nitrogen-vacancy centers. Considering the thermal expansion, the thermal balance properties of phonon resonance system are analyzed and its specific heat model is studied based on the Debye model. Finally, the structure optimization model of different axial nitrogen-vacancy centers under the phonon model is built up based on the molecular dynamics simulation software CASTEP and density functional theory for first-principles research. The structural characteristics, phonon characteristics, and thermodynamic properties of nitrogen-vacancy centers are analyzed. The research results show that the evolution of phonon mode depends on the occupation of the nitrogen-vacancy center. A decrease in thermodynamic entropy accompanies the strengthening of the phonon mode. The covalent bond of diamond with nitrogen-vacancy center is weaker than that of a defect-free diamond. The thermodynamic properties of a defect-free diamond are more unstable. The primary phonon resonance frequency of diamond with nitrogen-vacancy centers are on the order of THz, and the secondary phonon resonance frequency is about in a range of 800 and 1200 MHz. A surface acoustic wave resonance mechanism with an interdigital width of 1.5 μm is designed according to the secondary resonance frequency, and its center frequency is about 930 MHz. The phonon resonance control method can effectively increase the spin transition probability of nitrogen-vacancy center under suitable phonon resonance control parameters, and thus realizing the increase of atomic spin manipulation efficiency.
        通信作者:赵立业,liyezhao@seu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 62071118)资助的课题
        Corresponding author:Zhao Li-Ye,liyezhao@seu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 62071118)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

    • NV色心轴向 晶格动力学矩阵元不对称关系 NV色心轴向 晶格动力学矩阵元不对称关系
      无NV色心 $\left\{ \begin{aligned}&{ {D_{xy} }\left( {{q} } \right) = {D_{yx} }\left( {{q} } \right)}\\&{ {D_{yz} }\left( {{q} } \right) = {D_{zy} }\left( {{q} } \right)}\\&{ {D_{xz} }\left( {{q} } \right) = {D_{zx} }\left( {{q} } \right)}\end{aligned} \right.$ [–1, 1, –1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[ - 1, 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
      [1, 1, 1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [–1, –1, 1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[ - 1, - 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
      [1, –1, –1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, - 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
      下载: 导出CSV

      特征线 声子谱波矢条件 声子谱函数 极化向量
      Λ线 $ {{q}}_{{x}}={{q}}_{y}={{q}}_{{z}}={q} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } + {2}{B} _ {[1, 1, 1]} ^ {\varLambda }} \\ &{\omega }_{2}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } } \\ &{\omega }_{3}=\sqrt{ { {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({-}\frac{1}{\sqrt{{6}}}{, -}\frac{1}{\sqrt{{6}}}, \frac{\sqrt{{6}}}{3}\right)\end{aligned}\right. $
      $ \varDelta $线
      (ΓF线)
      (ZQ线)
      $ {{q}}_{{x}}={{q}}_{{z}}{=0} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{[1, 1, 1]}^{\varDelta }+{ {B} }_{[1, 1, 1]}^{\varDelta} }\\ &{\omega }_{2}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta } }\\ &{\omega }_{3}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta} }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 1, 0}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
      Σ线 ${ {q} }_{ {x} }={ {q} }_{y}={q},$
      $ {{q}}_{{z}}= 0 $
      $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{ [1, 1, 1] }^{\varSigma }+{ {B} }_ {[1, 1, 1]} ^ {\varSigma } }\\ &{\omega }_{2}=\sqrt{ { {A} }_{[1, 1, 1]} ^ {\varSigma } {-}{ {B} }_{[1, 1, 1]} ^ {\varSigma } } \\ &{\omega }_{3}=\sqrt{ { {C} }_ {[1, 1, 1]} ^{\varSigma } } \end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
      M线
      (ΓZ线)
      (FQ线)
      $ {{q}}_{{x}}={{q}}_{y}={0} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_ {[1, 1, 1]} ^{ {M} }+{ {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{2}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{3}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 0, 1}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 1, 0}\right)\end{aligned}\right. $
      注: $A_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_y}a/2} \right)} \right]$, $B_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( { {q_y}a} \right)} \right]$,
      $A_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\{ 3 - 2\cos \left( {qa/2} \right) - \cos \left( {qa} \right) + \left[ {2\eta - 2\eta \cos \left( {qa} \right)} \right]\}$, $B_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {1 - \cos \left( {qa} \right)} \right]$,
      $C_{[1, 1, 1]}^\varSigma = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {2 - 2\cos \left( {qa/2} \right)} \right]$, $A_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_z}a/2} \right)} \right]$,
      $B_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( {{q_z}a} \right)} \right]$.
      下载: 导出CSV

      声子极化方向 声子热平衡温度 声子极化方向 声子热平衡温度
      $ {\varLambda } $线方向 ${T}_{ {\varLambda } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varLambda } }+{ {2}{B} }_{ {[1, 1, 1]} }^{ {\varLambda } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ $ {\varSigma } $线方向 ${T}_{ {\varSigma } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varSigma } }+{ {B} }_{ {[1, 1, 1]} }^{ {\varSigma } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
      $ \varDelta $线方向 ${T}_{\varDelta }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{\varDelta }+{ {B} }_{ {[1, 1, 1]} }^{\varDelta } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ M线方向 ${T}_{ {M} }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {M} }+{ {B} }_{ {[1, 1, 1]} }^{ {M} } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
      注: 参数$ {{A}}_{{[1, 1, 1]}}^{{\varLambda }}, {{B}}_{{[1, 1, 1]}}^{{\varLambda }}, {{A}}_{{[1, 1, 1]}}^{\varDelta }, {{B}}_{{[1, 1, 1]}}^{\varDelta } $, $ {{A}}_{{[1, 1, 1]}}^{{\varSigma }}, {{B}}_{{[1, 1, 1]}}^{{\varSigma }}, {{A}}_{{[1, 1, 1]}}^{{M}} $和$ {{B}}_{{[1, 1, 1]}}^{{M}} $同表2.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

    • [1] 谭聪, 王登龙, 董耀勇, 丁建文.V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 必威体育下载 , 2024, 73(10): 107601.doi:10.7498/aps.73.20232006
      [2] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊.高频率分辨的金刚石氮-空位色心宽频谱成像技术. 必威体育下载 , 2024, 73(6): 067601.doi:10.7498/aps.73.20231833
      [3] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃.多晶金刚石薄膜硅空位色心形成机理及调控. 必威体育下载 , 2023, 72(3): 038102.doi:10.7498/aps.72.20221437
      [4] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明.碳离子注入金刚石制备氮空位色心的机理. 必威体育下载 , 2022, 71(18): 188102.doi:10.7498/aps.71.20220794
      [5] 杨志平, 孔熙, 石发展, 杜江峰.金刚石表面纳米尺度水分子的相变观测. 必威体育下载 , 2022, 71(6): 067601.doi:10.7498/aps.71.20211348
      [6] 安盟, 孙旭辉, 陈东升, 杨诺.石墨烯基复合热界面材料导热性能研究进展. 必威体育下载 , 2022, 71(16): 166501.doi:10.7498/aps.71.20220306
      [7] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳.基于金刚石氮-空位色心的温度传感. 必威体育下载 , 2022, 71(6): 060302.doi:10.7498/aps.71.20211822
      [8] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟.金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 必威体育下载 , 2022, 0(0): .doi:10.7498/aps.71.20220410
      [9] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟.金刚石氮-空位色心单电子自旋的电场驱动相干控制. 必威体育下载 , 2022, 71(11): 117601.doi:10.7498/aps.70.20220410
      [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰.金刚石表面纳米尺度水分子的相变观测. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211348
      [11] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰.基于金刚石固态单自旋的纳米尺度零场探测. 必威体育下载 , 2021, 70(21): 213301.doi:10.7498/aps.70.20211363
      [12] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊.固态金刚石氮空位色心光学调控优化. 必威体育下载 , 2020, 69(14): 147601.doi:10.7498/aps.69.20200072
      [13] 刘刚钦, 邢健, 潘新宇.金刚石氮空位中心自旋量子调控. 必威体育下载 , 2018, 67(12): 120302.doi:10.7498/aps.67.20180755
      [14] 李雪琴, 赵云芳, 唐艳妮, 杨卫军.基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 必威体育下载 , 2018, 67(7): 070302.doi:10.7498/aps.67.20172634
      [15] 廖庆洪, 叶杨, 李红珍, 周南润.金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 必威体育下载 , 2018, 67(4): 040302.doi:10.7498/aps.67.20172170
      [16] 董杨, 杜博, 张少春, 陈向东, 孙方稳.基于金刚石体系中氮-空位色心的固态量子传感. 必威体育下载 , 2018, 67(16): 160301.doi:10.7498/aps.67.20180788
      [17] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰.基于金刚石氮-空位色心的精密磁测量. 必威体育下载 , 2018, 67(16): 167601.doi:10.7498/aps.67.20181084
      [18] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清.利用金刚石氮-空位色心精确测量弱磁场的探索. 必威体育下载 , 2017, 66(23): 230601.doi:10.7498/aps.66.230601
      [19] 刘东奇, 常彦春, 刘刚钦, 潘新宇.金刚石纳米颗粒中氮空位色心的电子自旋研究. 必威体育下载 , 2013, 62(16): 164208.doi:10.7498/aps.62.164208
      [20] 朱砚磬, 王志强.自旋波-声子耦合对反铁磁体红外吸收谱的影响. 必威体育下载 , 1966, 22(3): 360-370.doi:10.7498/aps.22.360
    计量
    • 文章访问数:7239
    • PDF下载量:288
    • 被引次数:0
    出版历程
    • 收稿日期:2020-11-04
    • 修回日期:2020-12-19
    • 上网日期:2021-03-10
    • 刊出日期:2021-03-20

      返回文章
      返回
        Baidu
        map