-
随着电磁器件的集成化, 器件搭载的模块、实现的功能愈发多样. 各模块间的耦合难以忽略, 设计难度陡然增加, 传统设计方法逐渐力不从心, 迫切需要寻找一种新的电磁综合设计方法. 本文利用时间反演电磁波的时空同步聚焦特性, 探索了将时间反演技术应用于器件设计的可能性. 首先, 基于通用的器件逆设计流程, 利用时间反演技术、并矢格林函数及电磁学的基本原理, 提出了将器件端口场分布转换为内部场分布的方法, 并证明由端口期望场的时间反演场在空间某一位置获得的连续等效源的共轭分布可在端口处产生与期望场接近的场分布. 且在单点频逆设计过程中, 只需知道端口电场或磁场的切向分量即可完成端口场与内部场的转换. 同时, 借助格林函数的互易性对本文所提理论做适当变换后, 进行数值仿真验证, 分析讨论了不同初始信息条件下该方法的适用性. 仿真结果与理论相符, 证明了理论的正确性, 为将时间反演技术应用于电磁器件的逆设计提供了可能.With the integration of electromagnetic devices, the modules that make up into the devices and the functions that the devices needed to achieve are becoming more and more diverse. The coupling between the modules is difficult to ignore, the difficulty in designing increases sharply, and the traditional design methods gradually become incompetent. It is urgent to find a new comprehensive electromagnetic design method. This paper is to use the spatiotemporally synchronous focusing characteristics of time-reversed electromagnetic waves to explore the possibility of applying time-reversal technique to device design. First, based on the general device inverse design process, using the time-reversal technique, dyadic Green's function and basic principle of electromagnetics, a method of converting the port field distribution into the internal field distribution of the device is proposed. It is also proved that the continuous equivalent source obtained by the time-reversed field at a certain position in space can produce a field distribution close to the desired field at the port. In the single frequency inverse design process, only the tangential component of the electric field or magnetic field of the port is needed to be known. Then, with the help of the reciprocity of Green's function, the above theory is transformed to facilitate the numerical simulation. This numerical simulation realizes the reconstruction of the amplitude distribution source and the phase distribution source. It should be noted that the amplitude distribution source and phase distribution source are both randomly constructed. The numerical simulation verification is completed in two different cases and a variety of different initial conditions. All the simulation results are consistent with the theoretical results, which proves that it is feasible to apply time-reversal technique to the inverse design of electromagnetic devices.
-
Keywords:
- time-reversal/
- inverse design/
- Green's function
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] -
序号 使用的反演源 Field域 FPCF FACF PPCF PACF 1 ${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$ ${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$ 0.0077 0.0647 0.0189 0.0712 2 ${field}=\{ {Ex}, {Ey}, {Ez}\}$ 0.0086 0.0784 0.0085 0.0735 3 ${field}=\{ {Ex}, {Ey}\}$ 0.0082 0.0750 0.0085 0.0735 4 ${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$ ${field}=\{ {Ex, }{Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$ 0.0081 0.0624 0.0191 0.0735 5 ${field}=\{ {Ex}, {Ey}, Ez\}$ 0.0092 0.0703 0.0098 0.0707 6 ${field}=\{ {Ex}, {Ey}\}$ 0.0088 0.0668 0.0098 0.0707 7 ${ { {\cal{F} } }_{{field} }^{ \xi \text{, up} } }^{*}$, ${ { {\cal{F} } }_{{field} }^{ \xi \text{, down} } }^{*}$ ${field}=\{ {Ex}, {Ey}, {Ez}, {Hx}, {Hy}, {Hz}\}$ 0.0078 0.0635 0.0189 0.0713 8 ${field}=\{ {Ex}, {Ey}, {Ez}\}$ 0.0087 0.0747 0.0090 0.0718 9 ${field}=\{ {Ex}, {Ey}\}$ 0.0083 0.0712 0.0090 0.0718 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
计量
- 文章访问数:4854
- PDF下载量:90
- 被引次数:0