搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    张健, 王心桥, 苏彤, 陈英, 郭永权

    Calculation of thermic and electric properties and valence electron structure for metallic electrodes of Na||Sb-Pb-Sn liquid metal battery

    Zhang Jian, Wang Xin-Qiao, Su Tong, Chen Ying, Guo Yong-Quan
    PDF
    HTML
    导出引用
    • 应用固体与分子经验电子理论系统地研究液态金属池Na||Sb-Pb-Sn电极的价电子结构与热、电性能. 研究结果表明: 电极合金的价电子结构与其性能密切关联. 阴极合金Na 1–xIA x(IA = K, Rb, Cs)的晶格电子随着掺杂量的增加而减少, 诱发合金的熔点、结合能随掺杂量的增加而降低. Na离子输运到阳极, 与阳极Sb-Sn-Pb形成产物NaSb 3, NaSn, Na 15Sn 4, NaPb. 其理论熔点与实验相符. NaSb 3的平均晶格电子数最少, 开路电压最高. 研究表明: 对于Na||Sb-Pb-Sn液态金属电池体系而言, 晶格电子扮演重要的角色, 可以调控电极的热、电性能.
      The valence electron structures and thermal and electric properties of Na||Sb-Pb-Sn liquid metal battery are systematically studies with solid and molecular empirical electron theory (EET). The theoretical studies show that the thermal and electric properties are strongly related to the valence electron structure of electrode. The cathodic alloys Na 1– xIA x(IA = K, Rb, Cs) are designed by doping IA group alkali metals (K, Rb, Cs) into Na electrode since the melting points of IA group metals (K, Rb, Cs) are all lower than that of sodium. The theoretical bond lengths and cohesive energy of cathodic alloys Na 1– xIA xmatch the experimental ones well. The theoretical studies show the decreasing tendency of melting point, cohesive energy and electric potential with increasing doping content xin Na 1– xIA xalloys, which is due to the modulation of valence electron structure of IA group dopants. According to the analyses of valence structures, the number of lattice electrons decreases with the increasing of the doping content xfor the cathodic alloy and causes the melting point, electric potential and cohesive energy to decline. It reveals that the IA group dopant modulates the valence electron structure of cathodic alloy, and induces the electron transformation from lattice electron to covalent electron in s orbital. The anode products such as NaSb 3, NaSn, Na 15Sn 4and NaPb are formed by transporting Na ions into the anode alloy Sb-Sn-Pb. The calculated bond-lengths and melting points fit the observed ones well for these anode products. Owing to their complex structures with various atomic occupations in unit cell, the thermal property or electric property is not only relative to lattice electron, but also depends on the covalent electron. The sublattice plays an important role in the forming of the four anode products. The lattice electrons are supplied by Na at 4 fsites in Na 3Sb, Na at 16 eand Sn at 32 gsites in NaSn, Sn at 16 cand Na at 48 esites in Na 15Sn 4, and Na at 16 fand Pb at 32 gsites in NaPb, respectively. The open-gate voltage is closely related to the lattice electrons and inversely proportional to the average number of lattice electrons per atom. The open-gate voltage of NaSb 3is the largest among the anode products, however, its averaged number of lattice electron per atom is the least. Since the lattice electron number of NaSn is the largest among the anode products, the open-gate voltage of NaSn is the least. It implies that the lattice electron plays a very important role in Na||Sb-Pb-Sn liquid metal battery, which can modulate the valence electron structures and thermal and electric properties.
          通信作者:郭永权,yqguo@ncepu.edu.cn
        • 基金项目:国家重点研发计划(批准号: 2018YFB0905600)资助的课题
          Corresponding author:Guo Yong-Quan,yqguo@ncepu.edu.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0905600)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • Na1–xIAx $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å ${\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å $ {n}_{\rm{A}}$ $ { I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/${ \text{Å} }$ ${\bar{D} }_{\mathrm{uv} }\left({n}_{\alpha }\right)/{ \text{Å} }$ $ {n}_{\alpha } $ |∆D|/${\text{Å} }$
        Na 8 3.7296 3.7502 0.05160 6 4.3004 4.3210 0.00810 0.0206
        Na0.99K0.01 8 3.7381 3.7538 0.05220 6 4.3103 4.3260 0.00820 0.0157
        Na0.99Rb0.01 8 3.7430 3.7572 0.05220 6 4.3157 4.3300 0.00820 0.0143
        Na0.99Cs0.01 8 3.7454 3.7628 0.05220 6 4.3187 4.3361 0.00810 0.0175
        Na0.98K0.02 8 3.7465 3.7574 0.05290 6 4.3202 4.3310 0.00823 0.0108
        Na0.98Rb0.02 8 3.7564 3.7643 0.05290 6 4.3310 4.3389 0.00820 0.0079
        Na0.98Cs0.02 8 3.7611 3.7755 0.05290 6 4.3370 4.3513 0.00817 0.0143
        Na0.97K0.03 8 3.7550 3.7610 0.05348 6 4.3301 4.3361 0.00829 0.0060
        Na0.97Rb0.03 8 3.7697 3.7713 0.05351 6 4.3463 4.3479 0.00825 0.0016
        Na0.97Cs0.03 8 3.7769 3.7881 0.05354 6 4.3552 4.3665 0.00821 0.0113
        Na0.96K0.04 8 3.7635 3.7647 0.05411 6 4.3399 4.3411 0.00834 0.0012
        Na0.96Rb0.04 8 3.7831 3.7785 0.05415 6 4.3616 4.3570 0.00829 0.0047
        Na0.96Cs0.04 8 3.7926 3.8009 0.05419 6 4.3735 4.3818 0.00824 0.0082
        Na0.95K0.05 8 3.7719 3.7684 0.05474 6 4.3498 4.3463 0.00840 0.0036
        Na0.95Rb0.05 8 3.7965 3.7856 0.05479 6 4.3769 4.3661 0.00834 0.0109
        Na0.95Cs0.05 8 3.8084 3.8136 0.05484 6 4.3918 4.3971 0.00827 0.0052
        下载: 导出CSV

        Na1–xIAx nc ns np nl R(1)
        Na 0.4614 0.4606 0.0008 0.5386 1.4181
        Na0.99K0.01 0.4668 0.4660 0.0008 0.5332 1.4217
        Na0.98K0.02 0.4722 0.4713 0.0008 0.5278 1.4254
        Na0.97K0.03 0.4776 0.4767 0.0009 0.5224 1.4290
        Na0.96K0.04 0.4830 0.4821 0.0009 0.5170 1.4327
        Na0.95K0.05 0.4884 0.4875 0.0009 0.5116 1.4363
        Na0.99Rb0.01 0.4668 0.4660 0.0008 0.5332 1.4235
        Na0.98Rb0.02 0.4722 0.4713 0.0008 0.5278 1.4289
        Na0.97Rb0.03 0.4776 0.4767 0.0009 0.5224 1.4343
        Na0.96Rb0.04 0.4830 0.4821 0.0009 0.5170 1.4397
        Na0.95Rb0.05 0.4884 0.4875 0.0009 0.5116 1.4451
        Na0.99Cs0.01 0.4668 0.4660 0.0008 0.5332 1.4263
        Na0.98Cs0.02 0.4722 0.4713 0.0008 0.5278 1.4345
        Na0.97Cs0.03 0.4776 0.4767 0.0009 0.5224 1.4428
        Na0.96Cs0.04 0.4830 0.4821 0.0009 0.5170 1.4510
        Na0.95Cs0.05 0.4884 0.4875 0.0009 0.5116 1.4592
        下载: 导出CSV

        掺杂量x 原子 杂阶 掺杂 杂阶 $ \bar{T}_{\rm{m}} $/K $ {E}_{\mathrm{c}} $/(eV·atom–1) $ {\bar{E}}_{\mathrm{c}} $/(eV·atom–1) $\left| { {\Delta E}_{\mathrm{c} } }/{ {E}_{\mathrm{c} } }\right|/{\%}$ 电势/V
        0 Na 3 336.76 1.113 1.165 4.67 0.1482
        0.01 Na 2 K 4 336.64 1.111 1.164 4.77 0.1481
        0.01 Na 2 Rb 4 336.45 1.110 1.163 4.77 0.1480
        0.01 Na 2 Cs 4 336.02 1.103 1.161 5.26 0.1478
        0.02 Na 2 K 4 336.64 1.109 1.163 4.39 0.1481
        0.02 Na 2 Rb 4 336.14 1.108 1.161 4.78 0.1478
        0.02 Na 2 Cs 4 335.29 1.110 1.158 4.32 0.1475
        0.03 Na 2 K 4 336.60 1.103 1.162 5.35 0.1480
        0.03 Na 2 Rb 4 335.85 1.109 1.159 4.51 0.1476
        0.03 Na 2 Cs 4 334.58 1.108 1.154 4.15 0.1471
        0.04 Na 2 K 4 336.57 1.107 1.162 4.97 0.1479
        0.04 Na 2 Rb 4 335.57 1.103 1.157 4.90 0.1474
        0.04 Na 2 Cs 4 333.88 1.109 1.151 3.79 0.1467
        0.05 Na 2 K 4 336.55 1.108 1.161 4.78 0.1478
        0.05 Na 2 Rb 4 335.30 1.107 1.156 4.43 0.1472
        0.05 Na 2 Cs 4 333.20 1.108 1.147 3.52 0.1463
        下载: 导出CSV

        合金 空间群 a/$\text{Å}$ b/$\text{Å}$ c/$\text{Å}$ 原子 占位 x y z
        Sb 2c 0.3333 0.6666 0.2500
        Na3Sb P63mmc(194) 5.355 5.355 9.496 Na1 2b 0 0 0.2500
        Na2 4f 0.3333 0.6666 0.5830
        NaSn I41/acd(142) 10.460 10.460 17.390 Sn 32g 0.0696 0.1260 0.9362
        Na1 16f 0.6258 0.8758 0.1250
        Na2 16e 0.8724 0 0.2500
        Sn 16c 0.2083 0.2083 0.2083
        Na15Sn4 I43d(220) 13.140 13.140 13.140 Na1 12a 0.3750 0 0.2500
        Na2 48e 0.1270 0.1548 0.9670
        Pb 32g 0.0696 0.1186 0.9383
        NaPb I41/acd(142) 10.580 10.580 17.746 Na1 16e 0.2500 0.1250 0.5000
        Na2 16f 0.1250 0.3750 0.6250
        下载: 导出CSV

        合金 键序 成键原子 $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/$\text{Å}$ $ {\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right)/$$\text{Å}$ $ {n}_{\alpha } $ |ΔD|/$\text{Å}$
        Na3Sb 1 Sb-Na2 6 3.0975 3.0910 0.39055 0.0065
        2 Sb-Na1 4 3.1685 3.1620 0.19416 0.0065
        3 Na1-Na2 4 3.1780 3.1715 0.18030 0.0065
        4 Na1-Na1 6 3.4769 3.4704 0.03738 0.0065
        5 Sb-Na1 12 3.4813 3.4748 0.05846 0.0065
        6 Na2-Na1 12 3.4813 3.4748 0.05630 0.0065
        7 Na2-Na1 12 4.4310 4.4245 0.00147 0.0065
        8 Na2-Na2 2 4.7575 4.7510 0.00064 0.0065
        NaSn 1 Sn-Sn 2 2.9748 3.0201 0.42650 0.0453
        2 Sn-Sn 4 2.9925 3.0378 0.39849 0.0453
        3 Na1-Sn 4 3.3355 3.3808 0.07506 0.0453
        4 Na1-Sn 4 3.3592 3.4045 0.06854 0.0453
        5 Na2-Sn 4 3.3974 3.4427 0.13064 0.0453
        6 Na2-Sn 4 3.4231 3.4684 0.11837 0.0453
        7 Na1-Sn 4 3.4870 3.5323 0.04197 0.0453
        8 Na2-Sn 2 3.5225 3.5678 0.08083 0.0453
        9 Na2-Sn 4 3.5482 3.5935 0.07324 0.0453
        10 Na1-Na2 4 3.6148 3.6601 0.03985 0.0453
        11 Na1-Na2 4 3.6658 3.7111 0.03277 0.0453
        12 Na1-Na1 1 3.7218 3.7671 0.01197 0.0453
        13 Sn-Sn 2 3.7406 3.7859 0.02257 0.0453
        14 Sn-Sn 2 4.3780 4.4233 0.00196 0.0453
        15 Na1-Na2 4 4.4919 4.5372 0.00138 0.0453
        16 Na1-Sn 4 4.6674 4.7127 0.00045 0.0453
        17 Na2-Na2 1 4.7095 4.7548 0.00132 0.0453
        Na15Sn4 1 Sn-Na2 24 3.2378 3.2854 0.20850 0.0476
        2 Na2-Na2 24 3.2624 3.3100 0.19499 0.0476
        3 Na1-Na2 24 3.3425 3.3901 0.11017 0.0476
        4 Na2-Na2 12 3.3468 3.3944 0.14830 0.0476
        5 Sn-Na2 24 3.4049 3.4525 0.12127 0.0476
        6 Sn-Na2 24 3.4189 3.4665 0.11589 0.0476
        7 Na1-Na2 24 3.5026 3.5502 0.06555 0.0476
        8 Sn-Na1 24 3.5482 3.5958 0.05582 0.0476
        9 Na2-Na2 24 3.8138 3.8614 0.03261 0.047
        10 Na2-Na2 24 3.9794 4.0270 0.01906 0.0476
        11 Na2-Na2 12 4.1712 4.2188 0.01023 0.0476
        NaPb 1 Pb-Pb 2 3.1464 3.1452 0.33477 0.0013
        2 Pb-Pb 4 3.1618 3.1606 0.31556 0.0013
        3 Pb-Na2 4 3.3653 3.3641 0.19895 0.0013
        4 Pb-Na1 4 3.3888 3.3876 0.08237 0.0013
        5 Pb-Na2 4 3.4215 3.4203 0.16035 0.0013
        6 Pb-Na2 4 3.4847 3.4835 0.12582 0.0013
        7 Pb-Na1 4 3.4929 3.4917 0.05524 0.0013
        8 Pb-Na1 4 3.5549 3.5537 0.04354 0.0013
        9 Pb-Na1 4 3.6172 3.6160 0.03428 0.0013
        10 Pb-Pb 2 3.6418 3.6406 0.05001 0.0013
        11 Na1-Na2 8 3.6967 3.6955 0.03479 0.0013
        12 Na2-Na2 1 3.7406 3.7394 0.06488 0.0013
        13 Pb-Pb 2 4.4008 4.3996 0.00272 0.0013
        14 Na1-Na2 4 4.5455 4.5443 0.00134 0.0013
        15 Pb-Na2 4 4.7513 4.7501 0.00097 0.0013
        下载: 导出CSV

        合金 原子 杂阶 nc ns np nl R(1)
        Na3Sb Sb 2 3.0000 0.5694 2.4306 0 1.4279
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 2 0.4614 0.4606 0.0008 0.5386 1.4181
        NaSn Sn 1 2.0000 0 2.0000 2.0000 1.3990
        Na1 1 1.0000 0.9982 0.0018 0 1.3070
        Na2 4 0 0 0 1.0000 1.5133
        Na15Sn4 Sn 4 3.6638 0.8319 2.8319 0.3362 1.3990
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 3 0.5350 0.5340 0.0010 0.4650 1.4029
        NaPb Pb 2 2.0962 0.0481 2.0481 1.9038 1.4300
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 1 0 0 0 1.0000 1.5133
        下载: 导出CSV

        合金 Tm/K[35] $ \bar{T}_{\rm{m}} $/K |${\Delta {T}_{\mathrm{m} } }/{ {T}_{\mathrm{m} } }$|/% 电势/V n β Ec/(eV·atom–1)
        Na3Sb 1129 1142.96 1.2 1.1520 4 0.60 1.766
        NaSn 851 813.16 4.4 0.7343 5 0.60 2.103
        Na15Sn4 681 746.16 9.6 0.9074 3 0.71 1.318
        NaPb 645 630.68 2.2 0.8263 6 0.60 1.559
        下载: 导出CSV

        Na1–xIAx 开路电压/V
        Na3Sb NaSn Na15Sn4 NaPb
        Na 1.0038 0.5861 0.7592 0.6781
        Na0.09K0.01 1.0039 0.5862 0.7593 0.6782
        Na0.98K0.02 1.0039 0.5862 0.7593 0.6782
        Na0.97K0.03 1.0040 0.5863 0.7594 0.6783
        Na0.96K0.04 1.0041 0.5864 0.7595 0.6784
        Na0.95K0.05 1.0042 0.5865 0.7596 0.6785
        Na0.99Rb0.01 1.0040 0.5863 0.7594 0.6783
        Na0.98Rb0.02 1.0042 0.5865 0.7596 0.6785
        Na0.97Rb0.03 1.0044 0.5867 0.7598 0.6787
        Na0.96Rb0.04 1.0046 0.5869 0.7600 0.6789
        Na0.95Rb0.05 1.0048 0.5871 0.7602 0.6791
        Na0.99Cs0.01 1.0042 0.5865 0.7596 0.6785
        Na0.98Cs0.02 1.0045 0.5868 0.7599 0.6788
        Na0.97Cs0.03 1.0049 0.5872 0.7603 0.6792
        Na0.96Cs0.04 1.0053 0.5876 0.7607 0.6796
        Na0.95Cs0.05 1.0057 0.5880 0.7611 0.6800
        nl/atom 0.2693 1.2500 0.3645 1.0682
        下载: 导出CSV

        σ 1 2 3 4
        Chσ 1 0.5386 0.4650 0
        Ctσ 0 0.4616 0.5350 1
        nTσ 1 1 1 1
        nlσ 1 0.5386 0.4650 0
        ncσ 0 0.4616 0.5350 1
        Rσ(1) H 0.3708 0.3289 0.3222 0.2800
        Li 1.3260 1.2089 1.1440 0.9860
        Na 1.5133 1.4551 1.4308 1.3070
        K 1.9628 1.8794 1.8601 1.7820
        Rb 2.0870 2.0270 2.0175 1.9570
        Cs 2.2140 2.2260 2.2279 2.2400
        注: $ l, \; m, \;n, \; \tau $: 1 0 0 0
          $l{'}, \; m{'}, \;n{'}, \; \tau {'}$: 0.9982 0.0018 0 0
        下载: 导出CSV

        σ 1 2 3 4
        Chσ 1 0.5694 0.1983 0
        Ctσ 0 0.4306 0.8017 1
        nTσ 3 or 5 3 or 5 3 or 5 3 or 5
        nlσ 0 0 0 0
        ncσ 3 or 5 3 or 5 3 or 5 3 or 5
        Rσ(1) N 0.7000 0.7517 0.7973 0.8200
        P 1.0980 1.1173 1.1343 1.1428
        As 1.1800 1.2390 1.2911 1.3170
        Sb 1.3560 1.4279 1.4919 1.5230
        Bi 1.3990 1.4455 1.5044 1.5290
        注: $ l, \; m, \; n, \; \tau $: 1 2 0 1; $ l{'}, \; m{'}, \; n{'}, \; \tau {'} $: 0 3 0 1
        下载: 导出CSV

        σ 1 2 3 4 5 6
        Chσ 1 0.9502 0.8320 0.1681 0.0481 0
        Ctσ 0 0.0498 0.1680 0.8319 0.9519 1
        nTσ 4 4 4 4 4 4
        nlσ 2 1.9040 1.6640 0.3360 0.0960 0
        ncσ 2 2.0960 2.3360 3.6640 3.9040 4
        Rσ(1) C 0.7630 0.7630 0.7630 0.7630 0.7630 0.7630
        Si 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700
        Ge 1.2230 1.2230 1.2230 1.2230 1.2230 1.2230
        Sn 1.3990 1.3990 1.3990 1.3990 1.3990 1.3990
        Pb 1.4300 1.4300 1.4300 1.4300 1.4300 1.4300
        注: $ l, \; m, \; n, \; \tau $; 2 2 0 0; $ l{'}, \; m{'}, \; n{'}, \; \tau {'}; $ 1 3 0 1
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] 朱晓丽, 仇鹏, 卫会云, 何荧峰, 刘恒, 田丰, 邱洪宇, 杜梦超, 彭铭曾, 郑新和.GaN基半导体在改变钙钛矿太阳能电池性能方面的理论分析. 必威体育下载 , 2023, 72(10): 107702.doi:10.7498/aps.72.20230100
        [2] 唐贵德, 李壮志, 马丽, 吴光恒, 胡凤霞.典型磁性材料价电子结构研究面临的机遇与挑战. 必威体育下载 , 2020, 69(2): 027501.doi:10.7498/aps.69.20191655
        [3] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮.载流子复合及能量无序对聚合物太阳电池开路电压的影响. 必威体育下载 , 2020, 69(4): 046101.doi:10.7498/aps.69.20191699
        [4] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒.金属价电子结构对磁性和电输运性质的影响. 必威体育下载 , 2017, 66(2): 027101.doi:10.7498/aps.66.027101
        [5] 刘芳芳, 何青, 周志强, 孙云.Cu元素对Cu(In, Ga)Se2薄膜及太阳电池的影响. 必威体育下载 , 2014, 63(6): 067203.doi:10.7498/aps.63.067203
        [6] 王云飞, 李云凯, 孙川, 朱灵波, 缪勇, 陈雪冰.钢动静态强度计算的电子理论模型. 必威体育下载 , 2014, 63(12): 126101.doi:10.7498/aps.63.126101
        [7] 刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹.非晶硅锗电池性能的调控研究. 必威体育下载 , 2013, 62(20): 208801.doi:10.7498/aps.62.208801
        [8] 孟振华, 李俊斌, 郭永权, 王义.稀土元素的价电子结构和熔点、结合能的关联性. 必威体育下载 , 2012, 61(10): 107101.doi:10.7498/aps.61.107101
        [9] 肖文波, 何兴道, 高益庆.线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响. 必威体育下载 , 2012, 61(10): 108802.doi:10.7498/aps.61.108802
        [10] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂.AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合. 必威体育下载 , 2011, 60(4): 047101.doi:10.7498/aps.60.047101
        [11] 李荣华, 孟卫民, 彭应全, 马朝柱, 汪润生, 谢宏伟, 王颖, 叶早晨.阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究. 必威体育下载 , 2010, 59(3): 2126-2130.doi:10.7498/aps.59.2126
        [12] 吴文霞, 郭永权, 李安华, 李 卫.Nd2Fe14B的价电子结构分析和磁性计算. 必威体育下载 , 2008, 57(4): 2486-2492.doi:10.7498/aps.57.2486
        [13] 胡昆明, 王建波.确定等价电子杨盘基的新杨盘方法. 必威体育下载 , 2007, 56(3): 1253-1259.doi:10.7498/aps.56.1253
        [14] 胡昆明.关于等价电子组态波函数与Young盘间变换性质的讨论. 必威体育下载 , 2005, 54(10): 4524-4525.doi:10.7498/aps.54.4524
        [15] 陆赟豪, 段效邦, 吕 萍, 张寒洁, 李海洋, 鲍世宁, 何丕模.三萘基膦在Ag(110)面上沉积的紫外光电子能谱研究. 必威体育下载 , 2005, 54(9): 4319-4323.doi:10.7498/aps.54.4319
        [16] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁.OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 必威体育下载 , 2002, 51(11): 2644-2648.doi:10.7498/aps.51.2644
        [17] 徐至中.生长在GexSi1-x(001)衬底上应变GaAs层的价电子能带结构与光学性质. 必威体育下载 , 1996, 45(1): 126-132.doi:10.7498/aps.45.126
        [18] 刘让苏, 李基永.液态金属高温结构转变特性的模拟研究. 必威体育下载 , 1995, 44(10): 1582-1587.doi:10.7498/aps.44.1582
        [19] 陈魁英, 李庆春, 陈熙琛.液态过渡金属Pd和Pt的结构与微观动力学行为. 必威体育下载 , 1993, 42(2): 283-289.doi:10.7498/aps.42.283
        [20] 陈魁英, 李庆春.液态贵金属Au,Ag的局域结构与键取向序. 必威体育下载 , 1992, 41(11): 1813-1819.doi:10.7498/aps.41.1813
      计量
      • 文章访问数:5984
      • PDF下载量:70
      • 被引次数:0
      出版历程
      • 收稿日期:2020-09-30
      • 修回日期:2020-12-01
      • 上网日期:2021-04-02
      • 刊出日期:2021-04-20

        返回文章
        返回
          Baidu
          map