-
二维材料及其异质结在电子学、光电子学等领域具有潜在应用, 是延续摩尔定律的候选电子材料. 二维材料的转移对于物性测量与器件构筑至关重要. 本文综述了一些具有代表性的转移方法, 详细介绍了各个方法的操作步骤, 并基于转移后样品表面清洁程度、转移所需时间以及操作难易等方面对各个转移方法进行了对比归纳. 经典干、湿法转移技术是进行物理堆叠制备原子级平整且界面清晰范德瓦耳斯异质结的常用手段, 结合惰性气体保护或在真空条件下操作还可以避免转移过程中二维材料破损和界面吸附. 高效、无损大面积转移方法为二维材料异质结构建和材料本征物理化学性质测量提供了强有力的技术保障. 转移技术的优化将进一步扩展二维材料在高温超导、拓扑绝缘体、低能耗器件、自旋谷极化、转角电子学和忆阻器等领域的研究.The advent of two-dimensional (2D) materials, a family of materials with atomic thickness and van der Waals (vdWs) interlayer interactions, offers a new opportunity for developing electronics and optoelectronics. For example, semiconducting 2D materials are promising candidates for extending the Moore's Law. Typical 2D materials, such as graphene, hexagonal boron nitride (h-BN), black phosphorus (BP), transition metal dichalcogenides (TMDs), and their heterostrcutures present unique properties, arousing worldwide interest. In this review the current progress of the state-of-the-art transfer methods for 2D materials and their heterostructures is summarized. The reported dry and wet transfer methods, with hydrophilic or hydrophobic polymer film assistance, are commonly used for physical stacking to prepare atomically sharp vdWs heterostructure with clear interfaces. Compared with the bottom-up synthesis of 2D heterostructures using molecular beam epitaxy (MBE) or chemical vapor deposition (CVD), the construction of 2D heterostructures by transfer methods can be implemented into a curved or uneven substrate which is suitable for pressure sensing, piezoelectric conversion as well as other physical properties’ research. Moreover, the transfer of 2D materials with inert gas protected or in vacuum operation can protect moisture-sensitive and oxygen-sensitive 2D materials from degerating and also yield interfaces with no impurities. The efficient and non-destructive large-area transfer technology provides a powerful technical guarantee for constructing the 2D heterostructures and exploring the intrinsic physical and chemical characteristics of materials. Further development of transfer technology can greatly facilitate the applications of 2D materials in high-temperature superconductors, topological insulators, low-energy devices, spin-valley polarization, twistronics, memristors, and other fields.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] -
转移
类型转移方法 载体 转移过程中使用
的最高温度能否在手套箱或
真空中转移优点 缺点 参考
文献湿法 PVA吸附
转移法PVA 室温 × 容易剥离得到大面
积单层样品需要在样品周围局部溶
解高分子薄膜[53] PMMA协
助转移法PMMA 110 ℃ × 容易找到单层样品, 多种方法
将载体从原始基底分离PMMA高分子薄膜需要溶液
浸泡除去, 有机杂质吸附[32] PLLA快速
转移法PLLA 50 ℃ × 能转移零维、一维、二维
材料, 目标基底种类多有机杂质吸附, 二氯甲
烷溶液有毒性[37] 牺牲层
转移法MBMC 75—100 ℃ × 转移得到的样品表面更光滑 转移质量受样品与牺牲层高
分子之间的结合力影响[41] 小分子掺杂
PS转移法小分子掺杂PS 120 ℃ × 缩短转移时间, 降低有
机残留吸附需要降温、离子插层等技
术预处理, 步骤繁琐[47] 湿法 纤维素薄膜
转移法纤维素 室温 × 可以转移至曲面基底 操作不精细, 转移样品褶皱、
裂纹密度高[30] 金属辅助剥
离转移法金属 130 ℃ × 转移厘米级单层样品, 可控
实现AA堆积结构要求金属表面原子级平整,
刻蚀金属难以回收利用[55] 化学刻蚀
转移法PDMS, PMMA 室温 × 可以转移金属和SiO2/Si基
底上连续生长的样品刻蚀液污染环境, 刻蚀基
底难以回收利用[62] 电化学剥离
转移法PMMA 室温 × 金属基底可以重
复循环利用H2会使样品卷曲、褶皱 [68] 干法 PDMS剥离
转移法PDMS 室温 √ 无溶液接触, 转移迅速 样品质量受基底表面
平整度与接触按压压
力大小影响[76] vdWs相互作
用转移法h-BN 110 ℃ √ 无高分子接触 转移过程相对复杂 [82] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105]
计量
- 文章访问数:26648
- PDF下载量:2312
- 被引次数:0