-
作为近些年来最耀眼的明星材料之一, 钙钛矿以其优异独特的光电特性成功吸引研究人员的广泛关注. 自2009年报道了第一篇光电转换效率为3.8%的钙钛矿电池, 到现在短短10年期间效率已经突破25.2%,几乎可以与商用多晶硅电池媲美. 尽管其制备过程简单, 但在薄膜的形成过程中很容易引入大量的缺陷. 缺陷的存在会加速载流子的复合, 阻碍载流子传输通道, 不利于制备高效率的钙钛矿太阳能电池; 同时也会影响钙钛矿电池工作的长期稳定性, 加速材料的降解, 阻碍了钙钛矿太阳能电池进一步商业化发展. 因此, 理解缺陷的存在机制并有效地抑制缺陷产生, 对制备高性能长寿命器件至关重要. 而界面修饰作为一种有效的钝化缺陷方法之一, 已经被广泛使用. 本文讨论了不同结构电池器件的缺陷产生位置及对器件性能的影响. 分别从载流子传输层钝化策略和钙钛矿界面修饰策略入手, 分析了常用的传输层/钙钛矿界面钝化缺陷的机制, 指出了钝化策略发展的巨大优势, 并对合适的钝化材料进行分类, 希望能够对高重复性、高光电转换效率、长期工作稳定的钙钛矿太阳能电池发展提供有益的指导.As one of the most dazzling star materials in recent years, perovskite has attracted extensive attention due to its unique photoelectric properties. Since the first report on 3.8% power conversion efficiency of perovskite solar cells (PSCs) was published in 2009, its efficiency has increased to 25.2% in a short period of 10 years, almost comparable to the efficiency of commercial polysilicon cells. However, due to its simple preparation process, it is easy to introduce a large number of defects in the film formation process. The defects accelerate the recombination of carriers and thus hindering the carrier transport channel, which is unfavorable for the preparation of high efficiency perovskite solar cells. Moreover, the existence of defects will affect the stability of PSCs, accelerate the degradation of materials, thereby hindering its further commercial development. Therefore, it is very important to understand the mechanism of defects and effectively suppress the generation of defects for the fabrication of high performance devices. As an effective passivation strategy, the interface modification has been widely used. In this paper, the locations of defects in different structures of devices and their effects on device performance are discussed. Based on the carrier transport layer passivation strategy and perovskite interface modification strategy, the mechanism of the passivation defects at the transport layer/perovskite interface is analyzed. The great advantages of passivation strategy and the classification of appropriate passivation materials are pointed out. It is hoped that this paper can provide useful guidance for developing the perovskite solar cells with high repeatability, high efficiency and long-term stability.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] -
Passivation material Perovskite material Passivation position Jsc/(mA·cm–2) VOC(V) FF/% PCE/% Ref. ITIC-Th (FAPbI3)x(MAPbCl3)1–x TiO2/ITIC-Th 23.56
22.891.05
1.0276.58
66.1018.91a
15.43b[21] H2PtCl6. MAPbI3 TiO2-Pt 23.83
22.131.15
1.0675
7020.05a
17.52b[25] MeOH+CF
disperse the NCsCs0.05FA0.81MA0.14PbI2.55Br0.45 TiO2-Cl 22.3 1.189 80.6 21.4b [26] Boron element MAPbI3 B-TiO2 23.71
22.961.10
1.0878.60
76.6020.51a
19.06b[27] EDTA CsFAPbI E-SnO2 24.57
22.791.11
1.1079.2
75.521.60a
18.93b[28] Synthesized N, S-RCQs Cs0.05FA0.81MA0.14PbI2.55Br0.45 SnO2-RCQs 24.1
23.11.14
1.0782.9
77.822.77a
19.15b[29] KOH/NaOH Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 SnO2/KOH
SnO2/NaOH22.48
22.261.144
1.09578
7820.06a
19.01b[30] TiAcac/ZrAcac/HfAcac MAPbI3 PCBM/ZrAcac/Ag 22.17
20.031.079
1.04878.1
59.118.69a
12.43b[32] Fullerene(C60) MAPbI3 ICBA/C60 15.7 0.97 80.1 12.2a [33] TBP+PbI2 FAxMA1–xPb(IyBr1–y)3 PbI2-doped Spiro 23.9
22.71.123
1.07775.6
71.820.3a
17.6b[35] LAD replace Li-TFSI/t-BP MAPbI3 LAD-doped Spiro 22.35
22.341.05
1.0281
7819.01a
17.77b[36] V2O5 MAPbI3 V2O5/PEDOT 22.69
18.860.884
0.89674.70
74.0815a
12.52b[38] GO solution (Highly concentrated
graphene oxide)MAPb(IyBr1–y)3 PEDOT:GO 21.55
19.631.02
0.9782.3
78.5318.09a
14.95b[39] NiOx/Spiro bilayers (FAPbI3)0.87(MAPbBr3)0.13 NiOx/Spiro 23.82
23.021.14
1.1079.8
78.221.66a
19.80b[40] NaCl or KCl Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 NiOx/MClM: Na or K 22.89
22.651.15
1.0779.5
79.520.96a
19.27b[41] Cu(ac)2 MAPbI3–xClx Cu-doped NiOx 22.84 ± 0.32
23.53 ± 0.321.06 ± 0.01
1.10 ± 0.0159.68 ± 2.79
70.04 ± 1.4714.47 ± 0.83b
18.05 ± 0.58a[42] Thiophene or pyridine MAPbI3–xClx Perovskite/Thiophene or pyridine 21.3
24.1
20.71.02
1.05
0.9568
72
6815.3(T)a1
16.5(p)a2
13.1b[45] PVP Poly(4-vinylpyridine) MAPbI3 Perovskite/PVP 22.0
20.11.05
0.9066
6415.1a
11.6b[46] Lewis base BrPh-ThR and
Lewis acid bis-PCBM(FAI)0.81(PbI2)0.85(MABr)0.15(PbBr2)0.15 BrPh-ThR-doped
Perovskite/bis-PCBM23.93
23.131.12
1.1078
7321.7a
19.3b[47] ITIC;DTS;DR3T;PCBM MAPbI3 Perovskite/DR3T 22.20 ± 0.68
21.07 ± 0.871.08 ± 0.02
1.06 ± 0.0275.6 ± 1.07
4.7 ± 1.618.22 ± 0.65a
16.66 ± 0.63b[48] PEAI FAMAPbI Perovskite/PEAI 24.9 1.16 81.4 23.56a [49] NMAI Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 Perovskite/NMAI 22.28
22.541.174
1.09278.63
77.5820.57a
19.10b[50] GABr (FA0.95PbI2.95)0.85(MAPbBr3)0.15 Perovskite/GABr 22.50 ± 0.92
22.56 ± 0.971.20 ± 0.0
21.10 ± 0.0377 ± 1
78.5 ± 220.79 ± 0.50a
19.48 ± 0.85b[51] FAI MAPbI3 Perovskite/FAI 22.99
22.361.127
1.12677.5
75.520.09a
18.96b[52] LAIS Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 BDAI/Perovskite 22.59 1.21 81.63 22.31a [53] Residual amount of
different PbI2FAMAPbI Perovskite/PbI2 23.69 1.13 80.61 21.52a [54] Residual amount of
different PbI2FAMAPbI PbI2/Perovskite/PbI2 24.8
24.1
23.81.15
1.12
1.0478.4
80.1
75.222.3a1
21.6a2
18.8b[55] Cetyltrimethylammonium
bromide (CTAB)FAMAPbI modulated perovskite films with
ligand-modulation technology23.82
23.831.14
1.1081.14
78.5422.03a
20.58b[56] BAI BAx(FA0.83Cs0.17)1–xPb(I0.6Br0.4)3 2D-3D 22.7
19.81.14
1.1480
7520.6a
16.9b[58] BABr (FA0.83Cs0.17)Pb(I0.6Br0.4)3 3D/2D 19.3
19.21.31
1.2478
7419.8a
17.5b[59] PEAI Cs0.1FA0.74MA0.13PbI2.48Br0.39 3D/2D 22.73
21.811.14
1.09876.3
77.920.08a
18.65b[60] PEAI MAPbI3 2D/3D/2D 23.77
21.310.94
0.8981.95
79.2818.37a
15.10b[61] EAI, IAI, and GuaI FA0.93Cs0.07Pb (I0.92Br0.08)3 3D/2D(EAI) 24.14
24.501.12
1.0881
7622.40a
20.52b[62] FEAI CsFAMAPbI 3D/2D(FEAI) 25.79
25.471.096
1.04578.4
77.522.16a
20.62b[63] HDAD+ Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 3D/2D (HDADI) 22.80
22.881.10
1.0981
7720.31a
19.22b[64] tBBAI Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3 Perovskite/tBBAI 25.10
24.791.14
21.09182.1
78.523.5a
21.2b[65] Triphenylphosphine oxide (TPPO) and
tribenzylphosphine oxide (TBPO)Cs0.1FA0.74MA0.13PbI2.48Br0.39 Perovskite/TPPO
Perovskite/TBPO23.9 ± 0.25
23.7 ± 0.31
23.7 ± 0.211.139 ± 0.00 6
1.131 ± 0.004
1.106 ± 0.01380 ± 1
79 ± 1
78 ± 221.7 ± 0.2a1
21.2 ± 0.2a2
20.4 ± 0.3b[66] (1H, 1H, 2H, 2H-perfluorooctyl
trichlorosilane)PFTSCs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45 Perovskite/PFTS 23.03
22.931.176
1.13678.80
77.3921.34a
20.16b[67] Theophylline, caffeine, and theobromine (FAPbI3)0.92(MAPbBr3)0.08 N-H and C=O Passivation defect 25.24
24.781.191
1.16478.1
72.923.48a
21.02b[68] 注: a, 材料钝化; b.原始无钝化. 仅有一行参数的为只给出了最优钝化性能; 有三行参数的前两行分别是不同材料钝化结果. -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70]
计量
- 文章访问数:16854
- PDF下载量:365
- 被引次数:0