-
锡基钙钛矿太阳能电池可避免铅元素对环境带来的污染, 近年来已成为光伏领域的研究热点. 本文以SCAPS-1D太阳能电池数值模拟软件为平台, 对不同电子传输层和不同空穴传输层的锡基钙钛矿太阳能电池器件的性能进行数值仿真对比, 从理论上分析不同载流子传输层的锡基钙钛矿太阳能电池的性能差异. 结果显示, 载流子传输层与钙钛矿层的能带对齐对电池性能至关重要. 电子传输层具有更高的导带或电子准费米能级以及空穴传输层具有更低的价带或空穴准费米能级时, 对电池输出更大的开路电压有促进作用. 另外, 当电子传输层的导带高于钙钛矿层导带或钙钛矿层的价带高于空穴传输层的价带时, 钙钛矿层与载流子传输层界面形成spike势垒, 界面复合机制相对较弱, 促使电池获得更佳的性能. 当Cd 0.5Zn 0.5S和MASnBr 3分别作为电子传输层和空穴传输层时, 与其他材料相比, 获得了更优的输出特性: 开路电压 V oc= 0.94 V, 短路电流密度 J sc= 30.35 mA/cm 2, 填充因子FF = 76.65%, 功率转换效率PCE = 21.55%, 可认为Cd 0.5Zn 0.5S和MASnBr 3是设计锡基钙钛矿太阳能电池结构合适的载流子传输层材料. 这些模拟结果有助于实验上设计并制备高性能的锡基钙钛矿太阳能电池.
-
关键词:
- 锡基钙钛矿太阳能电池/
- 准费米能级/
- 电子传输层/
- 空穴传输层
To avoid environmental pollution caused by lead, the tin-based perovskite solar cells have become a research hotspot in the photovoltaic field. Numerical simulations of tin-based perovskite solar cells are conducted by the solar cell simulation software, SCAPS-1D, with different electron transport layers and hole transport layers. And then the performances of perovskite solar cells are compared with each other and analyzed on different carrier transport layers. The results show that band alignment between the carrier transport layer and the perovskite layer are critical to cell performances. A higher conduction band or electronic quasi-Fermi level of electron transport layer can lead to a higher open circuit voltage. Similarly, a lower valence band or hole quasi-Fermi level of hole transport layer can also promote a higher open circuit voltage. In addition, when the conduction band of electron transport layer is higher than that of the absorber, a spike barrier is formed at the interface between the electron transport layer and perovskite layer. Nevertheless, a spike barrier is formed at the interface between the perovskite layer and the hole transport layer if the valence band of hole transport layer is lower than that of the absorber. However, if the conduction band of electron transport layer is lower than that of the absorber or the valence band of hole transport layer is higher than that of the absorber, a cliff barrier is formed. Although the transport of carrier is hindered by spike barrier compared with cliff barrier, the activation energy for carrier recombination becomes lower than the bandgap of the perovskite layer, leading to the weaker interface recombination and the better performance. Comparing with other materials, satisfying output parameters are obtained when Cd 0.5Zn 0.5S and MASnBr 3are adopted as the electron transport layer and the hole transport layer, respectively. The better performances are obtained as follows: V oc= 0.94 V, J sc= 30.35 mA/cm 2, FF = 76.65%, and PCE = 21.55%, so Cd 0.5Zn 0.5S and MASnBr 3are suitable carrier transport layer materials. Our researches can help to design the high-performance tin-based perovskite solar cells.-
Keywords:
- tin-based perovskite solar cell/
- quasi-Fermi level/
- electron transport layer/
- hole transport layer
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] -
Parameter SnO2:F TiO2 MASnI3 spiro-OMeTAD Thickness/nm 500[13] 100[21] 500[13] 200[18] Eg/eV 3.5[13] 3.2[18] 1.3[13] 3.0[20] χ/eV 4.0[13] 3.9[18] 4.17[13] 2.45[20] εr 9.0[13] 9.0[18] 8.2[13] 3.0[20] Nc/cm–3 1 × 1019[13] 1 × 1021[18] 1 × 1018[13] 1 × 1019[21] Nv/cm–3 1 × 1019[13] 2 × 1020[18] 1 × 1018[13] 1 × 1019[21] μn/(cm2·V·s–1) 100[13] 20[18] 1.6[13] 0.0002[20] μp/(cm2·V·s–1) 25[13] 10[18] 1.6[13] 0.0002[20] Nd/cm–3 2 × 1019[13] 1 × 1017[18] 0[13] 0[20] Na/cm–3 0[13] 0[18] 1 × 1016[13] 2 × 1018[20] Nt/cm–3 1 × 1015[18] 1 × 1015[18] 1 × 1015[13] 1 × 1015[20] Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM ZnO Eg/eV 1.7[17] 2.4[25] 2.8[13] 3.05[18] 2[18] 3.3[17] χ/eV 3.9[17] 4.2[25] 3.8[13] 4.16[18] 3.9[18] 4.1[17] εr 4.2[17] 10[25] 10[13] 10[18] 3.9[18] 9[17] Nc/cm–3 8 × 1019[17] 2.2 × 1018[25] 1 × 1018[13] 5 × 1018[18] 2.5 × 1021[18] 4 × 1018[17] Nv/cm–3 8 × 1019[17] 1.8 × 1019[25] 1 × 1018[13] 5 × 1018[18] 2.5 × 1021[18] 1 × 1019[17] μn/(cm2·V·s–1) 0.08[17] 100[25] 100[13] 15[18] 0.2[18] 100[17] μp/(cm2·V·s–1) 0.0035[17] 25[25] 25[13] 0.1[18] 0.2[18] 25[17] Nd/cm–3 2.6 × 1018[17] 1 × 1017[25] 1 × 1017[13] 1 × 1018[18] 2.93 × 1017[18] 1 × 1018[26] Na/cm–3 0[17] 0[25] 0[13] 0[18] 0[18] 0[26] Nt/cm–3 1 × 1014[17] 1 × 1017[25] 1 × 1015[13] 1 × 1015[18] 1 × 1015[18] 1 × 1015[26] Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS Eg/eV 2.17[26] 2.98[18] 3.4[18] 2.15[13] 3.8[18] 2.2[18] χ/eV 3.2[26] 2.1[18] 1.9[18] 3.39[13] 1.46[18] 2.9[18] εr 6.6[20] 6.5[18] 10[18] 8.2[13] 11.7[20] 3[18] Nc/cm–3 2.5 × 1020[20] 2.8 × 1019[18] 1.7 × 1019[18] 1 × 1018[13] 2.5 × 1020[20] 2.2 × 1015[18] Nv/cm–3 2.5 × 1020[20] 1 × 1019[18] 2.5 × 1021[18] 1 × 1018[13] 2.5 × 1020[20] 1.8 × 1018[18] μn/(cm2·V·s–1) 80[20] 0.00017[18] 0.0001[18] 1.6[13] 2.8[20] 0.02[18] μp/(cm2·V·s–1) 80[20] 0.0002[18] 0.1[18] 1.6[13] 2.8[20] 0.0002[18] Nd/cm–3 0[20] 0[18] 0[18] 0[13] 0[18] 0[18] Na/cm–3 1 × 1018[26] 1 × 1018[18] 1 × 1018[18] 1 × 1018[13] 1 × 1018[18] 3.17 × 1014[18] Nt/cm–3 1 × 1015[26] 1 × 1015[18] 1 × 1014[18] 1 × 1015[13] 1 × 1014[18] 1 × 1015[18] Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM TiO2 ZnO Voc/V 0.84 0.81 0.93 0.82 0.83 0.84 0.83 Jsc/(mA·cm–2) 21.73 27.50 29.39 29.27 24.86 29.64 29.58 FF/% 69.47 62.62 64.73 63.95 67.53 69.27 67.72 PCE/% 12.66 14.01 17.70 15.32 13.92 17.24 16.64 Parameter C60 CdS Cd0.5Zn0.5S IGZO PCBM TiO2 ZnO CBO/eV 0.27 –0.03 0.37 0.01 0.27 0.27 0.07 Barrier shape spike cliff spike spike spike spike spike $E_{\rm{a}}^{{\rm{ETL}}}$/eV 1.3 1.27 1.3 1.3 1.3 1.3 1.3 Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS spiro-OMeTAD Voc/V 0.92 0.85 0.91 0.94 0.90 0.88 0.93 Jsc/(mA·cm–2) 28.71 28.18 28.45 30.35 28.32 28.21 29.39 FF/% 76.49 74.32 75.74 76.65 75.04 73.30 64.73 PCE/% 20.28 17.79 19.71 21.55 19.04 18.15 17.70 Parameter Cu2O CuI CuSCN MASnBr3 NiO PEDOT:PSS spiro-OMeTAD VBO/eV –0.1 –0.27 –0.17 0.07 –0.21 –0.27 –0.02 Barrier shape cliff cliff cliff spike cliff cliff cliff $E_{\rm{a}}^{{\rm{HTL}}}$/eV 1.2 1.03 1.13 1.3 1.09 1.03 1.28 Device structure Category PCE/% Device structure Category PCE/% SnO2/MAPbI3/spiro[38] experiment 14.19 TiO2/MAPbI3/CuSCN[47] simulation 20 TiO2/MAPbI3/spiro[43] experiment 15.9 Cu2O/MAPbI3/TiO2[20] simulation 28 TiO2/MAPbI3/spiro[44] experiment 17.36 ZnO/MAPbI3/Cu2O[26] simulation 20 ZnO/MAPbI3/spiro[40] simulation 22.49 TiO2/MAPbI3/CuI[47] simulation 17.54 ZnO/MAPbI3/P3HT[37] simulation 18.76 CdS/MAPbI3/spiro[42] simulation 23.83 TiO2/MAPbI3/CuGaO2[41] simulation 23.42 TiO2/MAPbI3/spiro[47] simulation 22.35 TiO2/MASnI3/spiro[46] experiment 6.4 PEDOT:PASS/MASnI3/PCBM[39] experiment 6.03 TiO2/MASnI3/spiro[45] experiment 5.73 Structure of this article simulation 21.55 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47]
计量
- 文章访问数:9461
- PDF下载量:248
- 被引次数:0