-
Low-cost, easy-to-deploy and self-driven flexible electronic devices and flexible sensors will bring new opportunities for developing the internet of things, wearable, and implantable technologies, especially human health monitoring, tactile perception and intelligent robot electronic skin. Therefore, it is necessary to provide high-performance and continuous energy supply modules for flexible electronic devices and flexible sensors. Nanogenerator can achieve high-performance sensing and energy storage characteristics by regulating the polarization electric field at the interface and surface, which is indeed an ideal adaptation choice. In particular, flexible piezoelectric nanogenerator can convert mechanical energy into electrical energy by piezoelectric properties, and can be applied to various deformation conditions such as bending, stretching and compression, which provides a novel solution to the problems of limited energy supply and insufficient performance in flexible electronic and self-driven technology. The piezoelectric output response of piezoelectric nanogenerator can be used not only as an energy signal to self-drive flexible electronic devices, but also as a sensing signal that can be integrated into the self-driven flexible sensors such as gas sensor, pressure sensor and biological sensor. Predictably, self-powered gas sensor with energy harvesting and high-sensitivity sensing, and self-charging power cell with energy harvesting and efficient storage will become hot topics. In this paper, we review the recent developments of flexible piezoelectric nanogenerators in flexible sensors and energy storage devices.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] -
组分材料 选择性 灵敏度 响应特性 工作条件 检测极限 检测范围 Au/SnO2厚膜
(非自驱动)[17]CO 电阻比30.2 (4000 ppm, 210 ℃) 响应时间8 s, 复原时间6 s (500 ppm, 210 ℃) 83—210 ℃ N/A 100—4000 ppm SnO2-CuO多层结构 (非自驱动)[18] H2S 电阻比2.7 × 104(20 ppm) 响应时间2 s 140 ℃ N/A 2—20 ppm p型CuO颗粒/n型SnO2纳米线异质结构 (非自驱动)[19] H2S 电导比3250 (2 ppm) 响应时间2 min,
复原时间10 min250 ℃ N/A 1—10 ppm 氧化铜功能化SnO2-ZnO核壳纳米线
(非自驱动)[20]H2S 约75% (12.5 ppm, 5 V, 50 ℃) N/A 室温 (材料的自热效应提供能量) N/A N/A 单壁碳纳米管
(非自驱动)[21]H2S 71.91% (40 mV) 1.53—0.89 μA 能量窗口介于
$ \pm $0.02 eVN/A N/A ZnO纳米线[22] O2; H2S;
水蒸气35.7%; 28.6%; 127.3% 0.7; 0.198; 0.35 V
压电输出室温 100 ppm (H2S) 100—1000 ppm (H2S) NiO/ZnO异质结
纳米线阵列[23]H2S 536% (1000 ppm) 0.388 V (0 ppm)—0.061 V (1000 ppm) 室温 10—30 ppm 0—1000 ppm ZnSnO3/ZnO
纳米线[24]液化石油气 498.9% (8000 ppm) 0.533 V (0 ppm)—0.089 V (8000 ppm) 室温 600 ppm 1000—8000 ppm SnO2/ZnO纳米阵列[25] H2 471.4% (800 ppm) 0.80 V (0 ppm)—
0.14 V (800 ppm)室温, 可由手指
弯曲驱动10 ppm 0—800 ppm CuO/ZnO PN结
纳米阵列[26]H2S 约629.8% (800 ppm) 0.738 V (0 ppm)—
0.101 V (800 ppm);
响应时间250 s (200 ppm)室温 N/A 0—800 ppm CdS纳米棒阵列[27] H2S 166.7% (600 ppm) 0.32 V (0 ppm)—
0.12 V (600 ppm)室温, 可由手指
按压驱动N/A 0—600 ppm PANI/PTFE/PANI三明治纳米结构[28] 乙醇 66.8% (210 ppm) 响应时间 < 20 s,
复原时间 < 25 s室温 30 ppm 0—210 ppm 组分名称 主要功能 材料举例 电池电极 为电极的氧化还原反应提供反应场所和反应物质 Cu[32,66,70,71,73,78,80,92,98,99,101]; Al[11,23,25,33,41,66,70,73,79,85,95,97,102-105]; LiCoO2[66,70]; 石墨[57,58,70,81,86];
石墨烯[66]; ITO[48,61,72,90,95,96,106]; Au[29,40,43,44,50,74-76,82-84,87,96,97,103,107-109]; Cr[40,74,75,107];
Ag[49,54,94,100,107,110]; 碳纳米管[44,82,91]; Ti[11,23,25,55]; Ni[33,93]; MnO2[111]组分名称 主要功能 材料举例 压电
分离层压电效应; 为离子传导提供动力等 ZnO纳米线/棒[11,40,55,80,97,100,109]; (介孔) PVDF纳米薄膜[8,37,66,70,73,79,87,110];
PVDF-ZnO复合薄膜[50,74,75,81,103,111]; P(VDF-TrFE)复合薄膜[43,44,61,76,78,82,83,86,89,91,92,94-96,107,108];
PVDF-BaTiO3复合薄膜[10,44,90]; PVDF-BiVO4复合薄膜[88]; PVDF-KNN复合薄膜[102,104];
PVDF-rGO-Ag复合薄膜[85]; PVDF-ZrO2复合薄膜[98]; PVDF-NiO-SiO2复合薄膜[57];
ZnPc纳米棒[105]; 单层MoS2薄片[29]组分材料 电解质类型 峰值输出电压/电流 能量存储容量/μA·h 稳定性 主要特性 PVDF薄膜/ LiCoO2-TiO2
电极/ Al-Ti基板[9]液态LiPF6 327—395 mV
(2.3 Hz, 45 N)约0.036 约8000周期 PVDF-SCPC的雏形 PVDF纳米薄膜/LiCoO2-
石墨烯电极/ Al-Cu箔-
聚酰亚胺基板[66]液态LiPF6 500—850 mV
(1.0 Hz, 34 N,
弯曲角度${10^ \circ }$)约0.266 约450 min 石墨烯电极和聚酰
亚胺基板被首次应
用于柔性SCPC介孔PVDF薄膜/ LiCoO2-
石墨电极/ Al-Cu基板[70]固态LiPF6 25—473 mV
(1.0 Hz, 30 N)约0.118 约160 min 全固态可
弯折SCPCPVDF-PZT纳米复合薄
膜/LiCoO2-多壁碳纳米管电极/Al-Cu基板[68]液态LiPF6 210—297.6 mV
(1.5 Hz, 10 N)约0.010 N/A PZT具有较高
的压电势系数
(500—600 pC/N)定向P(VDF-TrFE) 纳米纤维/平行Cu电极/PI基板[78] N/A 12 V, 150 nA
(1.6 Hz, 2 kPa)N/A N/A 高β晶相含量 PVDF-ZnO纳米复合薄膜/Al-Au电极/PTFE基板[103] N/A 约600 mV
(6.0 Hz, 21 N)N/A N/A ZnO和PVDF材料的极
化方向相同, 杂化结构
具有协同的压电特性 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112]
计量
- 文章访问数:15382
- PDF下载量:615
- 被引次数:0