-
齿鲸生物经过长期自然选择, 进化出小巧、灵敏、高效的声呐系统. 齿鲸生物声呐研究涉及海洋物理、声学、生物学、仿生学和信息学等学科, 对于生物仿生、水声声呐、信号处理、水下探测与通信等领域具有参考价值. 本文从声呐系统解剖结构、声呐信号与声呐波束调控三方面出发介绍齿鲸声呐发射系统. 首先, 介绍如何利用计算机断层扫描成像与超声测量技术重建齿鲸声呐发射系统的高精度三维结构, 获取其声速、密度分布, 为声呐系统的功能研究建立基础. 随后, 探究声呐系统发出的声信号的特性, 研究声信号与生物行为之间的联系. 最后, 参考齿鲸生物声呐解剖结构与声呐信号特性建立数值模型研究声发射系统的气质结构、软组织结构和骨质结构组成的声学多相介质对声波传播的控制作用. 齿鲸生物能利用其声呐信号的多样性与声呐发射系统结构的复杂特性动态调整声波传播与波束形成. 探究齿鲸生物声呐工作原理能加深对生物多相介质中的声传播过程的理解, 有望为水下仿生声探测与感知技术的发展提供新思路.Odontocetes have evolved for millions of years to own a unique echolocation system. The exceptional performance of odontocetes echolocation system can provide reference to artificial sonar systems, acoustic metamaterials and sound control designs. Research on odontocetes biosonar requires interdisciplinary effort, including acoustics, biology, biomimetics, anatomy, physiology and signal analysis. In this paper, we review odontoctes’ biosonar emission process from aspects of anatomy, biosonar signal and beam formation. To begin, computed tomography scanning and untrasound measurements are combined to reconstruct the sound speed and density distributions. To follow, efforts are thrown to probe into the biosonar signal and its corresponding acoustic behavior. Numerical simulations are used to investigate the odontocetes’ biosonar beam formation. The secret of exceptional performance of odontocetes’ echolocation system lies in their unique anatomy. Odontocete integrates acoustic structures with different acoustic impedances, namely solid bony structures, air space and soft tissues as a whole emission system to efficiently modulate sound propagation and sound beam formation. These acoustic structures are well organized in the forehead, forming a natural acoustic metamaterial to perform a good control of sounds. These results can enlighten artificial sonar designs.
-
Keywords:
- odontocetes/
- echolocation/
- biosonar/
- computed tomography scan
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]
计量
- 文章访问数:9081
- PDF下载量:209
- 被引次数:0