搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

卢建新, 张楠

D-brane interaction, the open string pair production and its enhancement plus its possible detection

Lu Jian-Xin, Zhang Nan
PDF
HTML
导出引用
  • 本文较为详细地介绍了作者之一及其合作者近期在Type II弦理论中有关D膜间相互作用, 开弦对产生以及这种对产生在一定情况下的增强效应的系列研究工作. 具体包括计算了带有一般世界体常数电磁场情况下平行放置且有一定间距的两张D膜间的相互作用, 讨论了相关特性, 比如相互作用的吸引或排斥情况. 当其中至少一张膜带电场时, 这种相互作用振幅通常有一个虚部, 反映了该系统的一种不稳定性即开弦对的产生, 并给出相应的衰变率和开弦对产生率. 另外, 探讨了这种开弦对产生率的增强效应, 发现其与所加的电场和磁场的方向和大小相关联. 当其中一个膜的空间维度为3, 另一个膜的空间维度为1时, 这种开弦对产生率可以大到人类实验室条件下得以检验. 开弦对的产生率与两膜沿额外维方向的间距密切关联, 如果假定弦理论的正确性及人类的4维时空可以看成一张D3膜的话, 测量开弦对产生所给出的(比如)电流并验证其与所加电磁场的关系符合预言, 由此可以检验额外维的存在性. 同时, 这也为弦理论提供了一种实验检验, 并且这是一种无须将该理论紧化到四维时空的全新方式.
    This review article reports the recent studies, based on a series of publications by one of the present authors along with his collaborators, regarding the interaction between two D-branes, the open string pair production and its possible enhancement in Type II superstring theories. Specifically, computed is the interaction amplitude between two D-branes, placed parallel at a separation, with each carrying a general worldvolume constant flux, and discussed are the amplitude properties, say, the repulsive or attractive nature of the interaction. When at least one of the D-branes carries an electric flux, the interaction amplitude can have an imaginary part, reflecting the instability of the underlying system via the open string pair production. The decay rate and the pair production rate are both computed. In addition, the enhancement of the latter is found when the added electric and magnetic fluxes are correlated in both magnitude and direction in a certain manner. In particular, when one of the branes is D3 and the other is D1, the corresponding pair production rate becomes large enough to be tested in an earthbound laboratory. Note that the pair production rate is related to the brane separation along the direction transverse to both branes, therefore, to the extra-dimensions with respect to the brane observer. So if the underlying string theory is relevant and the D3 can be taken as our own 4-dimensional world, measuring, say, the electric current due to the pair production and comparing it against the added electric and magnetic fields to see if the measurements agree with the prediction of the computations. This can be used to verify the existence of extra-dimensions. Further, this provides also a potential new means to test the underlying string theory without the need of compactifying it to four dimensions.
        通信作者:卢建新,jxlu@ustc.edu.cn
      • 基金项目:国家自然科学基金(批准号: 11775212, 11947301)资助的课题
        Corresponding author:Lu Jian-Xin,jxlu@ustc.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11775212, 11947301)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

    • p 本征值满足的关系
      0 $\lambda = 1$
      1 $\lambda_{0} + \lambda^{-1}_{0} = {\rm{tr} } { {w}}$
      2 $\lambda_{0} + \lambda^{-1}_{0} = {\rm{tr} } { {w}} - 1$, $\lambda = 1$
      3 $\displaystyle\sum_{\alpha =0}^{1} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}}, \;\;\displaystyle\sum_{\alpha =0}^{1} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2}$
      4 $\displaystyle\sum_{\alpha =0}^{1} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}} - 1, \;\;\displaystyle\sum_{\alpha =0}^{1} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2} - 1, \, \lambda = 1$
      5 $\displaystyle\sum_{\alpha =0}^{2} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}}, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2}, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{3}_{\alpha} + \lambda^{-3}_{\alpha}) = {\rm{tr} } { {w}}^{3}$
      6 $\displaystyle\sum_{\alpha =0}^{2} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}} - 1, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2} - 1, $ $\displaystyle\sum_{\alpha =0}^{2} (\lambda^{3}_{\alpha} + \lambda^{-3}_{\alpha}) = {\rm{tr} } { {w}}^{3} - 1,$ $ \lambda = 1$
      下载: 导出CSV

      p 振幅表达式((44)式)方括号中$\theta$项及其简化
      0 $\theta^{4}_{3} (0 |it) - \theta^{4}_{4} (0 |it) - \theta^{4}_{2} (0 | it) = 2\, \theta^{4}_{1} (0 | it) = 0$
      1 或 2 $\theta^{3}_{3} (0 |it) \theta_{3} (\nu_{0} |it) - \theta^{3}_{4} (0 |it) \theta_{4} (\nu_{0} |it) - \theta^{3}_{2} (0 |it) \theta_{2} (\nu_{0} | it) = 2\, \theta^{4}_{1} \left(\left.\dfrac{\nu_{0}}{2}\right| it \right)$
      3 或 4 $\theta^{2}_{3} (0 |it) \theta_{3} (\nu_{0} |it) \theta_{3} (\nu_{1} |it)- \theta^{2}_{4} (0 |it) \theta_{4} (\nu_{0} |it) \theta_{4} (\nu_{1} |it)- \theta^{2}_{2} (0 |it) \theta_{2} (\nu_{0} | it)\theta_{2} (\nu_{1} | it)$$= 2\, \theta^{2}_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} }{2}\right|it \right) \theta^{2}_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} }{2}\right|it \right)$
      5 或 6 $\theta_{3} (0 |it) \theta_{3} (\nu_{0} |it) \theta_{3} (\nu_{1} |it) \theta_{3} (\nu_{2} |it) - \theta_{4} (0 |it) \theta_{4} (\nu_{0} |it) \theta_{4} (\nu_{1} |it) \theta_{4} (\nu_{2} |it)$$ - \theta_{2} (0 |it) \theta_{2} (\nu_{0} | it)\theta_{2} (\nu_{1} | it) \theta_{2} (\nu_{2} | it) $ $= 2\, \theta_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} + \nu_{2} }{2}\right| it \right) \theta_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} + \nu_{2} }{2}\right| it \right) \theta_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} - \nu_{2} }{2}\right| it \right)\theta_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} - \nu_{2} }{2}\right| it \right) $
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

    • [1] 王康, 徐成, 吴晋锋, 杨恺, 元冰.蜂毒肽与单组分脂膜相互作用的单分子研究. 必威体育下载 , 2021, 70(17): 178701.doi:10.7498/aps.70.20210477
      [2] 鲁江涛, 程鑫彬, 沈正祥, 焦宏飞, 张锦龙, 马彬, 丁涛, 刘永利, 鲍刚华, 王孝东, 叶晓雯, 王占山.单层膜体吸收与界面吸收研究. 必威体育下载 , 2011, 60(4): 047802.doi:10.7498/aps.60.047802
      [3] 王诗平, 张阿漫, 刘云龙, 姚熊亮.气泡与弹性膜的耦合效应数值模拟. 必威体育下载 , 2011, 60(5): 054702.doi:10.7498/aps.60.054702
      [4] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福.孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 必威体育下载 , 2009, 58(1): 482-487.doi:10.7498/aps.58.482
      [5] 赵栋才, 任 妮, 马占吉, 邱家稳, 肖更竭, 武生虎.掺硅类金刚石膜的制备与力学性能研究. 必威体育下载 , 2008, 57(3): 1935-1940.doi:10.7498/aps.57.1935
      [6] 靳惠明, Felix Adriana, Aroyave Majorri.注镧Co-Cr合金表面氧化膜生长规律与微观结构表征. 必威体育下载 , 2008, 57(1): 561-565.doi:10.7498/aps.57.561
      [7] 喻利花, 董松涛, 董师润, 许俊华.AlN/Si3N4纳米多层膜的外延生长与力学性能. 必威体育下载 , 2008, 57(8): 5151-5158.doi:10.7498/aps.57.5151
      [8] 黄朝强, 陈 波, 李新喜, V. G. Syromyatnikov, N. K. Pleshanov.CoFe/TiZr多层膜材料界面结构与性能的极化中子反射研究. 必威体育下载 , 2008, 57(1): 364-370.doi:10.7498/aps.57.364
      [9] 岳建岭, 孔 明, 赵文济, 李戈扬.反应溅射VN/SiO2纳米多层膜的微结构与力学性能. 必威体育下载 , 2007, 56(3): 1568-1573.doi:10.7498/aps.56.1568
      [10] 鲍丙豪, 宋雪丰, 任乃飞, 李长生.非晶态合金薄带与膜的巨磁电阻抗效应理论及计算. 必威体育下载 , 2006, 55(7): 3698-3704.doi:10.7498/aps.55.3698
      [11] 陈习权, 祖小涛, 郑万国, 蒋晓东, 吕海兵, 任 寰, 张艳珍, 刘春明.单层SiO2物理膜与化学膜激光损伤机理的对比研究. 必威体育下载 , 2006, 55(3): 1201-1206.doi:10.7498/aps.55.1201
      [12] 魏 仑, 梅芳华, 邵 楠, 李戈扬, 李建国.TiN/SiO2纳米多层膜的晶体生长与超硬效应. 必威体育下载 , 2005, 54(4): 1742-1748.doi:10.7498/aps.54.1742
      [13] 薛双喜, 王 浩, 杨辅军, 王君安, 曹 歆, 汪汉斌, 高 云, 黄忠兵, 冯 洁, W. Y. Cheung, S. P. Wong, 赵子强.Ag对CoPt/Ag纳米复合膜的结构与磁性的影响. 必威体育下载 , 2005, 54(11): 5395-5399.doi:10.7498/aps.54.5395
      [14] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬.TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 必威体育下载 , 2005, 54(10): 4846-4851.doi:10.7498/aps.54.4846
      [15] 王 浩, 杨辅军, 薛双喜, 曹 歆, 王君安, 顾豪爽, 赵子强.CoPt(FePt)-C纳米复合膜的结构与磁性. 必威体育下载 , 2005, 54(3): 1415-1419.doi:10.7498/aps.54.1415
      [16] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富.Fe/Si多层膜的层间耦合与界面扩散. 必威体育下载 , 2004, 53(11): 3920-3923.doi:10.7498/aps.53.3920
      [17] 萧淑琴, 刘宜华, 颜世申, 代由勇, 张 林, 梅良模.FeCuNbSiB单层膜和三明治膜的磁特性与巨磁阻抗效应. 必威体育下载 , 1999, 48(13): 187-192.doi:10.7498/aps.48.187
      [18] 徐明春, 颜世申, 刘宜华, 黄佶.Co-Zr/Pd多层膜的磁性与结构. 必威体育下载 , 1997, 46(7): 1420-1426.doi:10.7498/aps.46.1420
      [19] 万梅香, 周维侠.聚苯胺膜的磁学性能. 必威体育下载 , 1992, 41(2): 347-352.doi:10.7498/aps.41.347
      [20] 雷啸霖.磁场中的超导膜. 必威体育下载 , 1965, 21(9): 1619-1637.doi:10.7498/aps.21.1619
    计量
    • 文章访问数:9255
    • PDF下载量:282
    • 被引次数:0
    出版历程
    • 收稿日期:2020-01-06
    • 修回日期:2020-03-01
    • 刊出日期:2020-05-20

      返回文章
      返回
        Baidu
        map