-
偏振光探测在遥感成像、环境监测、医疗检测和军事设备等领域都具有很好的应用价值, 目前已经有一系列偏振探测和成像产品. 随着信息器件进一步小型化、集成化, 基于新型低维材料的偏振光探测器可以直接利用材料本征的各向异性对偏振光进行感知, 在未来偏振光探测领域有很好的应用前景. 很多二维/一维半导体材料, 例如: 黑磷, ReS 2, GaTe, GeSe, GeAs及ZrS 3等, 都具有较强的本征面内各向异性, 可以用于高性能偏振光探测器. 基于此类低维半导体材料设计的不同结构类型的偏振光探测器已经覆盖了紫外、可见以及红外等多个波段. 本文总结了近年来相关领域的研究进展和我们课题组的一些工作.Polarized photodetection technology has good application value in the fields of remote sensing imaging, environmental monitoring, medical detection and military equipment. Polarized photodetectors based on low-dimensional materials can use the natural anisotropy of materials to detect polarized information. Some two-dimensional materials have strong in-plane anisotropy due to their low-symmetrical crystal structure, such as black-phosphorus, black-arsenic, ReS 2, GaTe, GeSe, GeAs, and TiS 3. These anisotropic two-dimensional materials are appropriate for the working medium of polarized photodetectors. Numerous researchs focused on polarized photodetectors with different materials and device structures and our works are introduced. Polarized photodetectors based on such low-dimensional materials have realized a broadband photodetection, including ultraviolet, visible, and infrared lights.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] -
禁带宽度/eV 载流子迁移率/cm2·V–1·s–1 光响应强度 二向色性比值 参考文献 黑磷 0.3 (体材料)
1.5 (单层)1000 (空穴,x)600 (空穴,y) 14.2 mA/W 8.7 (1550 nm) [29] 黑砷 0.3 (体材料)1—
1.5 (单层)376.7 (电子, zigzag)1.5 (电子, armchair)
60.7 (空穴, zigzag)10606 (空穴, armchair)[14,30] 锑烯 1.3—1.7 100 (3.2 eV) [31] ReS2 1.4 (体材料) 23.1 (电子, DS-chains方向)14.8 (电子, 垂直DS-chains方向) 103A·W–1(532 nm) ~ 4 [32,33] ReSe2 1.17—1.2 10 1.5 mA·W–1(633 nm) 2 (633 nm) [34] MoTe2 外尔半金属 110 mA·W–1(1064 nm) [10] WTe2 外尔半金属 4.9 (514.5 nm) [35] GaTe 1.7 0.2 (空穴) 104A·W–1(532 nm) [36] TlSe 0.73 1.48 A·W–1(633 nm) 2.56 (633 nm) [37] SnS 1.3 20 (zisgzag)μzigzag/μarmchair≈ 1.7 365 A·W–1(808 nm) 1.49 (808 nm) [38,39] GeSe 1.34 (体材料)
1.7 (单层)4.25 A·W–1 2.16 (808 nm) [40] GeS2 > 3 2.1 (325 nm) [41] GeSe2 2.74 3.4 (450 nm) [42] GeAs 0.83 (体材料)
2.07 (单层)4.4 (808 nm) [43] GeP 0.51 (体材料)
1.68 (单层)电导率比值: 1.52 3.11—0.43 A·W–1 1.83 (532 nm) [44] GeAs2 0.98 (体材料)
1.62 (单层)2.5 (空穴,a)1.3 (空穴,b) 2 [45] ZrS3 1.79 (体材料) 230 m A·W–1(520 nm) 2.55 (520 nm) [46] TiS3 1.13 2500 A·W–1(808 nm) 4 [47] α-MoO3 2.7 0.06–0.09 (电子,b)0.03—0.04 (电子,c) 67.9 A·W–1 5 (254 nm) [12] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122]
计量
- 文章访问数:20335
- PDF下载量:990
- 被引次数:0