搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜

    Low frequency band gaps of Helmholtz resonator coupled with membrane

    Chen Xin, Yao Hong, Zhao Jing-Bo, Zhang Shuai, He Zi-Hou, Jiang Juan-Na
    PDF
    HTML
    导出引用
    • 设计了一种含薄膜壁的Helmholtz型声子晶体, 该结构利用了空气和薄膜的耦合振动, 一方面将刚性壁转变为柔性壁, 降低了一阶振动时的等效刚度, 使第一带隙下限分别低于同参数下的普通Helmholtz型声子晶体和薄膜, 另一方面基于局域共振原理, 由于薄膜的出现和腔口空气通道长度的增加, 使得结构在低频范围内存在多个振动模态, 从而将原有一个带隙扩展为多个带隙. 将该结构带隙上下限分别等效为环形系统和串联系统, 用传递矩阵法和有限元法两种方法计算了其低频带隙范围, 两种方法结果吻合良好. 通过调整参数对带隙调控规律进行了进一步分析, 结果显示, 在低频范围内, 既可以通过改变与腔口空气通道或薄膜相关的参数, 在保证其中某些带隙变化不大的情况下, 单独调整其他带隙; 也可以通过调整内外腔体积, 对所有带隙进行调控.
      In this paper, a phononic crystal is designed using a Helmholtz resonator with a membrane wall, in which the coupled vibration of air and membrane is utilized. The structure of the Helmholtz resonator is a two-dimensional structure. On the basis of the square Helmholtz resonator, a " W”-type outlet is used as a cavity outlet to increase the air quality involved in resonance, and the cavity wall is replaced with a membrane with distribution mass to increase the number of resonance units. The finite element method is used to calculate the band gaps and transmission loss of sound below 1700 Hz. The results show that the starting frequency of the first band gap of the structure is further reduced. At the same time, it is lower than the starting frequency of ordinary Helmholtz structure and the natural frequency of membrane under the same conditions. Then, a new peak of transmission loss is obtained, and its value is greater than the original structure’s. And although the width of the first band gap is reduced, some new band gaps appear in the low-frequency range, so that the total band gap width is improved. By analyzing the vibration mode of the membrane and sound pressure distribution, it is found that the sum of the sound pressures of the outer cavity is zero at the starting frequencies of the band gaps, and the sound pressure of the inner and outer cavity are respectively positive and negative at the cut-off frequency. With the increase of frequency, the vibration mode of the membrane gradually turns from low-order to high-order, but no anti-symmetric-type mode participation is found at the starting and cut-off frequency. The components of the structure can be made equivalent to corresponding ones, respectively, i.e. air in the outlet is equivalent to uniform flexible rod, and the air in the inner and outer cavity are equivalent to a spring. So that the structure can be equivalent to a series system consisting of a rod, a spring and a membrane at starting frequency of the band gap, and a loop system consisting of a rod, two springs and a membrane at cut-off frequency. Thus, by the transfer matrix method and the Rayleigh-Ritz method considering the influence of tension and elastic modulus, it is possible to calculate the range of band gap which is extremely close to the result from the finite element method. Through the analysis of the formulas, it can be found that the new band gap is caused by the new vibration mode produced by the membrane or the air in the cavity outlet, and the lower starting frequency of the first band gap is due to the reduction of the equivalent extent of the system by the membrane. By adjusting the relevant parameters of the membrane and the cavity outlet respectively, it can be found that the band gaps of the structure correspond to the modes of different orders of the air in the cavity outlet and the membrane. In other words, the change of the natural frequency of a certain mode of air in the outlet or membrane only has a greater influence on the corresponding band gap but has less influence on other band gaps, also, the trends of change are the same, and the change values are very close to each other. But, changing the volume of the inner cavity and the outer cavity has a great influence on all the band gaps. Therefore, it is possible to adjust some band gaps through this method.
          通信作者:赵静波,chjzjb@163.com
        • 基金项目:国家自然科学基金(批准号: 11504429)资助的课题
          Corresponding author:Zhao Jing-Bo,chjzjb@163.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11504429)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

      • ls/10–3m 4 6 8 10 12 14
        1阶固有频率 252.4 237.9 226.8 218.2 211.6 206.6
        2阶固有频率 751.3 782.8 794.0 814.8 843.4 879.1
        下载: 导出CSV

        ls/10–3m 第一带隙下限 第一带隙上限 第二带隙下限 第二带隙上限 第三带隙下限 第三带隙上限
        FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/%
        4 89.2 3.7 121.4 4.4 314.2 2.8 557.7 0.6 790.7 2.2 900.3 1.6
        92.5 126.7 323.0 561.2 808.3 914.7
        6 88.9 3.6 120.1 4.2 297.7 1.8 526.8 –0.8 789.1 0.4 905.2 0.8
        92.2 125.1 303.1 522.8 792.4 912.2
        8 88.7 3.5 118.9 3.9 285.1 0.9 508.3 –2.1 795.6 –1.1 916.1 –0.5
        91.9 123.5 287.6 497.5 786.8 912.0
        10 88.6 3.4 117.9 3.5 275.6 –0.1 497.9 –3.5 815.9 –3.7 932.5 –2.3
        91.6 122.0 275.4 480.5 786.0 910.8
        12 88.5 3.1 117.2 3.0 268.4 –1.0 492.6 –4.8 843.8 –6.9 953.9 –5.2
        91.3 120.7 265.6 469.1 785.3 904.4
        14 88.5 2.8 116.7 2.3 262.9 –2.0 490.5 –5.9 878.5 –11 966.3 –8.2
        91.0 119.4 257.6 461.5 779.9 887.3
        下载: 导出CSV

        T/106N·m–1 第一带隙下限 第一带隙上限 第二带隙下限 第二带隙上限 第三带隙下限 第三带隙上限
        FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/%
        0.5 74.3 3.4 89.3 2.8 259.2 0.7 440.3 –1.2 574.1 0.1 770.1 0.5
        76.8 91.8 261.0 434.9 574.4 774.3
        1.5 96.3 3.4 143.1 4.6 345.5 3.2 589.6 0.2 952.1 2.2 1035.1 1.7
        99.6 149.7 356.7 591.0 973.0 1053.1
        2.5 103.3 2.9 174.6 4.6 415.0 4.2 648.0 0.7 1217.4 2.8 1274.1 2.3
        106.4 182.7 432.6 652.4 1251.0 1303.2
        3.5 106.8 2.7 196.4 4.4 474.9 4.8 691.4 1.1 1434.1 3.0 1478.6 2.5
        109.6 205.0 497.6 698.8 1477.6 1516.1
        4.5 108.8 2.5 212.5 4.1 528.2 5.1 729.6 1.4 1621.6 3.2 1642.5 3.3
        111.5 221.3 555.2 740.1 1673.4 1696.5
        10 113.0 2.1 257.8 3.0 757.3 5.9 907.9 2.7 1645.9 5.8 1741.8 3.1
        115.3 265.6 801.7 932.8 1740.6 1796.2
        100 116.2 1.8 311.0 1.2 1654.1 5.2 1737.3 3.1 2270.8 9.0 2375.3 6.1
        118.3 314.9 1740.4 1791.6 2475.7 2520.3
        下载: 导出CSV

        l1/mm 第一带隙下限 第一带隙上限 第二带隙下限 第二带隙上限 第三带隙下限 第三带隙上限
        FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/%
        99 88.4 4.4 119.1 5.7 302.1 3.4 533.0 1.3 772.3 3.4 891.4 2.4
        92.3 125.9 312.5 540.0 798.6 912.9
        148 74.5 3.4 101.5 5.1 301.2 3.5 513.3 1.1 772.6 3.4 873.7 2.4
        77.1 106.7 311.7 519.1 798.9 894.4
        197 66.0 2.9 89.9 4.7 301.9 3.5 500.0 1.1 772.4 3.3 836.0 1.9
        67.9 94.1 312.5 505.3 798.2 851.8
        246 60.1 2.6 81.4 4.5 303.2 3.5 488.5 1.0 697.6 1.2 734.1 0.9
        61.7 85.1 313.7 493.3 705.9 740.6
        295 55.8 2.5 75.0 4.3 304.7 3.4 475.7 0.9 587.8 0.7 637.5 0.7
        57.2 78.2 315.2 479.9 591.9 642.3
        344 52.5 2.4 69.8 4.2 306.3 3.4 458.4 0.7 507.5 0.6 558.9 3.1
        53.7 72.7 316.6 461.5 510.8 576.4
        下载: 导出CSV

        V2/10–4m3 第一带隙下限 第一带隙上限 第二带隙下限 第二带隙上限 第三带隙下限 第三带隙上限
        FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/% FEM
        TMM
        误差/%
        7.07 108.5 6.3 120.5 5.8 406.9 1.0 566.2 1.0 809.9 1.9 953.1 1.2
        115.3 127.6 411.0 571.8 825.3 964.2
        10.57 103.3 4.8 121.1 4.8 361.4 1.6 558.3 –0.1 796.5 1.9 925.4 1.4
        108.3 126.8 367.2 557.8 811.4 938.7
        14.07 98.0 4.2 121.0 4.4 335.0 1.9 550.0 –0.1 790.9 1.8 913.1 1.4
        102.2 126.4 341.3 549.4 804.9 925.8
        17.57 93.3 3.9 120.9 4.3 317.7 2.1 544.4 –0.1 788.3 1.6 906.5 1.3
        96.9 126.1 324.4 543.9 801.1 918.1
        19.32 91.1 3.8 120.8 4.3 311.1 2.2 542.3 –0.1 787.4 1.6 904.1 1.2
        94.5 126.0 317.9 541.8 799.7 915.3
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

      • [1] 韩东海, 张广军, 赵静波, 姚宏.新型Helmholtz型声子晶体的低频带隙及隔声特性. 必威体育下载 , 2022, 71(11): 114301.doi:10.7498/aps.71.20211932
        [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江.球形复合柱表面波声子晶体的带隙特性仿真. 必威体育下载 , 2021, 70(14): 144301.doi:10.7498/aps.70.20210165
        [3] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟.暗声学超材料型充液管道的低频消声特性. 必威体育下载 , 2019, 68(14): 144301.doi:10.7498/aps.68.20190311
        [4] 贾鼎, 葛勇, 袁寿其, 孙宏祥.基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 必威体育下载 , 2019, 68(22): 224301.doi:10.7498/aps.68.20190951
        [5] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜.Helmholtz腔与弹性振子耦合结构带隙. 必威体育下载 , 2019, 68(8): 084302.doi:10.7498/aps.68.20182102
        [6] 杜春阳, 郁殿龙, 刘江伟, 温激鸿.X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 必威体育下载 , 2017, 66(14): 140701.doi:10.7498/aps.66.140701
        [7] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛.双开口Helmholtz局域共振周期结构低频带隙特性研究. 必威体育下载 , 2017, 66(6): 064301.doi:10.7498/aps.66.064301
        [8] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋.一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 必威体育下载 , 2017, 66(1): 014307.doi:10.7498/aps.66.014307
        [9] 侯丽娜, 侯志林, 傅秀军.局域共振型声子晶体中的缺陷态研究. 必威体育下载 , 2014, 63(3): 034305.doi:10.7498/aps.63.034305
        [10] 程聪, 吴福根, 张欣, 姚源卫.基于局域共振单元实现声子晶体低频多通道滤波. 必威体育下载 , 2014, 63(2): 024301.doi:10.7498/aps.63.024301
        [11] 高东宝, 曾新吾, 周泽民, 田章福.一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 必威体育下载 , 2013, 62(9): 094304.doi:10.7498/aps.62.094304
        [12] 张思文, 吴九汇.局域共振复合单元声子晶体结构的低频带隙特性研究. 必威体育下载 , 2013, 62(13): 134302.doi:10.7498/aps.62.134302
        [13] 胡家光, 徐文, 肖宜明, 张丫丫.晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 必威体育下载 , 2012, 61(23): 234302.doi:10.7498/aps.61.234302
        [14] 文岐华, 左曙光, 魏欢.多振子梁弯曲振动中的局域共振带隙. 必威体育下载 , 2012, 61(3): 034301.doi:10.7498/aps.61.034301
        [15] 陈圣兵, 韩小云, 郁殿龙, 温激鸿.不同压电分流电路对声子晶体梁带隙的影响. 必威体育下载 , 2010, 59(1): 387-392.doi:10.7498/aps.59.387
        [16] 钟会林, 吴福根, 姚立宁.遗传算法在二维声子晶体带隙优化中的应用. 必威体育下载 , 2006, 55(1): 275-280.doi:10.7498/aps.55.275
        [17] 王文刚, 刘正猷, 赵德刚, 柯满竹.声波在一维声子晶体中共振隧穿的研究. 必威体育下载 , 2006, 55(9): 4744-4747.doi:10.7498/aps.55.4744
        [18] 赵 芳, 苑立波.二维复式格子声子晶体带隙结构特性. 必威体育下载 , 2005, 54(10): 4511-4516.doi:10.7498/aps.54.4511
        [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙.基于集中质量法的一维声子晶体弹性波带隙计算. 必威体育下载 , 2004, 53(10): 3384-3388.doi:10.7498/aps.53.3384
        [20] 王 刚, 温激鸿, 韩小云, 赵宏刚.二维声子晶体带隙计算中的时域有限差分方法. 必威体育下载 , 2003, 52(8): 1943-1947.doi:10.7498/aps.52.1943
      计量
      • 文章访问数:7750
      • PDF下载量:138
      • 被引次数:0
      出版历程
      • 收稿日期:2019-05-05
      • 修回日期:2019-06-24
      • 上网日期:2019-11-01
      • 刊出日期:2019-11-05

        返回文章
        返回
          Baidu
          map