搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    李冬梅, 韩敬宇, 董闯

    Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy

    Li Dong-Mei, Han Jing-Yu, Dong Chuang
    PDF
    HTML
    导出引用
    • Cu-Ni-Si系铜合金有良好的导电、导热和机械性能, 被广泛用于电子元器件等领域. 设计Cu-Ni-Si系铜合金成分时, 析出相成分的确定是关键. 本文利用团簇加连接原子模型方法按“析出相”设计Cu-Ni-Si系铜合金的成分. 依据团簇选取准则, 选定 δ-Ni 2Si, γ-Ni 5Si 2和β-Ni 3Si相团簇式分别为 [Ni-Ni 8Si 5]Ni, [Si-Ni 10]Si 3和 [Si-Ni 12]Si 3; 在基体Cu含量原子分数为93.75%, 95%, 95.83%, 96.7% 和 97.5% 的每一成分点处, 分别按析出相δ-Ni 2Si, γ-Ni 5Si 2和β-Ni 3Si设计了系列Cu-Ni-Si合金的成分. 合金原料在充满氩气的真空电弧炉中熔炼成合金锭, 经 950 °C/1 h固溶水淬和 450 °C/4 h时效水淬处理. 当合金的导电性成为成分设计的主因时, 基体Cu含量分别在90%—95.63% 和95.63%—97.5% 成分区间时, 析出相分别按δ-Ni 2Si和 γ-Ni 5Si 2设计; 基体Cu含量大于97.5%, 按δ-Ni 2Si, γ-Ni 5Si 2或β-Ni 3Si中任一相设计均可, 导电性基本没有差别. 如果合金的强度是成分设计的主因, 基体Cu含量分别在90%—93.93%, 93.93%—94.34%, 94.34%—95.63% 和95.63%—96.12% 成分区间时, 析出相对应于上述成分区间分别按δ-Ni 2Si, γ-Ni 5Si 2, β-Ni 3Si和 γ-Ni 5Si 2设计; 基体Cu含量一旦大于96.12%, 析出相按δ-Ni 2Si, γ-Ni 5Si 2或β-Ni 3Si中任一相设计均可.
      Cu-Ni-Si alloy has good electrical conductivity, thermal conductivity, high strength, and high hardness, and is widely used in electronic components and other fields. When the compositions of the Cu-Ni-Si alloy are designed, the determination of the phase component is critical. In this work, the composition of Cu-Ni-Si alloy is designed according to the "precipitation phase" by cluster-plus-glum-atom model. Following the cluster selection criteria, the δ-Ni 2Si, γ-Ni 5Si 2and β-Ni 3Si phase clusters are determined, respectively, and the corresponding cluster formulas are [Ni-Ni 8Si 5]Ni,[Si-Ni 10]Si 3, and [Si-Ni 12]Si 3. the compositions of a series of Cu-Ni-Si alloys are designed according to the different precipitated phases of δ-Ni 2Si, γ-Ni 5Si 2, and β-Ni 3Si each with Cu atom content being 93.75%, 95%, 95.8%, 96.7% and 97.5%, respectively. The alloy raw material is melted into alloy ingot in an argon-filled vacuum arc furnace. The ingots undergoes solid-solution at 950 ° C for 1 hour and water quenching then aging treatment at 450 ° C for 4 hour and water quenching. The conductivity and Vickers hardness of the alloy are tested by conductivity meter and hardness meter, respectively. The microstructure of the alloy is characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In general, the electrical conductivity of Cu-Ni-Si is the main consideration in the design of alloy composition, the content values of matrix Cu atoms are in the ranges of 90%-95.63% and 95.63%-97.5% respectively, the precipitated phases are designed according to δ-Ni 2Si and γ-Ni 5Si 2respectively; the content of matrix Cu atoms is over 97.5%, it can be designed according to any phase of δ-Ni 2Si, γ-Ni 5Si 2and β-Ni 3Si, with no difference in electrical conductivity among them. If the strength of the alloy is the main factor in the composition design, the content values of Cu atoms in the matrix are in the ranges of 90% — 93.93%, 93.93% — 94.34%, 94.34%— 95.63%, and 95.63%—96.12% respectively, according to the composition intervals the precipitated phases are designed as δ-Ni 2Si, γ-Ni 5Si 2, β-Ni 3Si, and γ-Ni 5Si 2, respectively. Once the content of Cu in the matrix is greater than 96.12%, the precipitated phase can be designed according to any of the phases of δ-Ni 2Si, γ-Ni 5Si 2and β-Ni 3Si.
          通信作者:董闯,dong@dlut.edu.cn
        • 基金项目:国家自然科学基金(批准号: 11674045)资助的课题
          Corresponding author:Dong Chuang,dong@dlut.edu.cn
        • Funds:Project supported by The National Natural Science Foundation of China (Grant No. 11674045)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

      • 心部原子 壳层原子数目 壳层原子种类 壳层原子与心部原子的距离r/nm 径向原子密度ρ/nm-3 团簇 团簇构型
        Ni1 1 Si1 0.20823 52.909 Ni9Si4 图2(a)
        2 Si1 0.22614 82.615
        1 Si1 0.23232 95.245
        2 Ni2 0.25359 102.526
        1 Ni2 0.26231 105.871
        1 Ni2 0.26268 118.602
        2 Ni1 0.27021 133.174
        2 Ni2 0.27132 155.464
        1 Si1 0.29611 128.795
        Ni2 2 Si1 0.24629 47.964 Ni9Si5 图2(b)
        2 Si1 0.24872 77.619
        1 Si1 0.24972 92.092
        2 Ni1 0.25359 117.172
        2 Ni2 0.25818 138.792
        1 Ni1 0.26231 145.573
        1 Ni1 0.26268 158.136
        2 Ni1 0.27132 167.423
        1 Si1 0.32162 107.695
        2 Ni2 0.34426 93.668
        Si1 1 Ni1 0.20823 52.909 SiNi9 图2(c)
        2 Ni1 0.22614 82.615
        1 Ni1 0.23232 95.245
        2 Ni2 0.24629 111.915
        2 Ni2 0.24872 139.715
        1 Ni2 0.24972 153.381
        1 Ni1 0.29611 101.196
        2 Si1 0.31484 99.496
        1 Ni2 0.32162 100.515
        2 Si1 0.34056 96.754
        下载: 导出CSV

        心部原子 壳层原子数目 壳层原子种类 壳层原子与心部原子的距离r/nm 径向原子密度ρ/nm–3 团簇 团簇构型
        Ni1 3 Si5 0.23282 113.557 Ni7Si5 图4(a)
        6 Ni8 0.25853 138.229
        2 Si1 0.26156 160.177
        6 Ni7 0.32954 120.138
        6 Ni4 0.39376 93.896
        6 Ni6 0.42716 91.935
        3 Si5 0.43428 96.236
        6 Ni8 0.45646 97.946
        6 Si2 0.47401 100.921
        2 Ni2 0.49734 91.258
        Ni2 1 Ni2 0.23332 37.61 Ni8Si4 图4(b)
        1 Si1 0.23578 54.668
        3 Si4 0.2421 100.995
        3 Ni6 0.24757 141.671
        3 Ni5 0.25331 176.342
        3 Ni5 0.34555 86.834
        3 Ni7 0.34582 103.957
        3 Ni3 0.38621 87.072
        3 Si3 0.4174 78.829
        3 Ni6 0.41824 88.149
        3 Ni5 0.42043 96.421
        3 Ni3 0.43617 94.99
        Ni3 3 Si4 0.24409 65.696 Ni10Si4 图4(c)
        1 Si2 0.24965 76.755
        3 Ni5 0.25453 115.879
        3 Ni6 0.26112 147.572
        3 Ni5 0.26706 175.563
        1 Si3 0.36558 73.329
        3 Ni7 0.37339 82.588
        3 Ni2 0.38621 87.072
        3 Ni6 0.41335 81.169
        3 Ni5 0.42222 85.68
        Ni4 3 Si5 0.23225 76.265 Ni10Si4 图4(d)
        1 Si3 0.25456 72.399
        3 Ni8 0.25532 114.807
        3 Ni7 0.25574 157.083
        3 Ni8 0.27402 162.522
        1 Si2 0.35821 77.949
        3 Ni6 0.37974 78.514
        3 Ni1 0.39376 82.159
        3 Ni7 0.39797 90.948
        3 Ni8 0.41739 88.689
        Ni5 1 Si4 0.23142 38.544 Ni8Si3 图4(e)
        1 Si3 0.23246 57.044
        1 Si4 0.24177 67.606
        1 Ni6 0.25071 75.786
        1 Ni6 0.25316 88.328
        1 Ni2 0.25331 102.866
        1 Ni5 0.25375 116.951
        1 Ni3 0.26706 137.942
        1 Ni6 0.28031 130.136
        2 Ni5 0.29349 132.276
        Ni6 1 Si2 0.22997 39.278 Ni9Si4 图4(f)
        1 Si1 0.23889 52.56
        1 Si4 0.2445 65.366
        1 Ni2 0.24757 78.706
        1 Si3 0.24916 92.651
        1 Ni5 0.25071 103.499
        1 Ni5 0.25316 117.77
        1 Ni8 0.25429 130.733
        1 Ni7 0.25495 144.134
        1 Ni7 0.26059 148.474
        1 Ni3 0.26112 160.988
        1 Ni7 0.26728 162.621
        Ni7 1 Si3 0.22567 41.566 Ni9Si4 图4(g)
        1 Si1 0.22958 59.218
        1 Si5 0.23849 70.434
        1 Si2 0.24038 85.982
        1 Ni8 0.24588 96.408
        1 Ni8 0.25044 106.443
        1 Ni6 0.25495 115.307
        1 Ni4 0.25574 128.522
        1 Ni5 0.26021 135.569
        1 Ni6 0.26059 148.474
        1 Ni6 0.26728 150.111
        1 Ni8 0.27224 153.893
        Ni8 1 Si5 0.23059 38.962 Ni9Si4 图4(h)
        1 Si5 0.24054 51.486
        1 Ni8 0.2457 64.413
        1 Ni7 0.24588 80.34
        1 Si2 0.24656 95.613
        1 Ni7 0.25044 106.443
        1 Ni6 0.25429 116.207
        1 Ni4 0.25531 129.173
        1 Ni1 0.25853 138.229
        Ni8 1 Si1 0.27197 130.605 Ni9Si4 图4(h)
        1 Ni7 0.27224 142.055
        1 Ni4 0.27402 150.913
        Si1 3 Ni7 0.22958 78.957 SiNi11 图4(i)
        1 Ni2 0.23578 91.113
        3 Ni6 0.23889 140.161
        1 Ni1 0.26156 120.132
        3 Ni8 0.27197 142.479
        3 Ni5 0.34489 87.334
        3 Si5 0.35017 100.131
        3 Si2 0.38543 87.602
        3 Si3 0.39237 94.898
        3 Si4 0.41136 92.647
        Si2 3 Ni6 0.22997 78.556 SiNi10 图4(j)
        3 Ni7 0.24038 120.375
        3 Ni8 0.24656 159.354
        1 Ni3 0.24965 168.861
        3 Ni5 0.33462 89.249
        3 Si5 0.35153 93.475
        1 Ni4 0.35821 93.539
        3 Si1 0.38543 87.602
        3 Si3 0.38982 96.772
        3 Si4 0.40727 95.466
        Si3 3 Ni7 0.22567 83.132 SiNi10 图4(k)
        3 Ni5 0.23246 133.102
        3 Ni6 0.24916 154.418
        1 Ni4 0.25456 159.277
        3 Ni8 0.33473 89.161
        3 Si4 0.35895 87.797
        1 Ni3 0.36558 87.995
        3 Si2 0.38982 84.676
        3 Si1 0.39237 94.898
        3 Si5 0.40056 100.344
        Si4 2 Ni5 0.23142 57.816 SiNi10 图4(l)
        2 Ni5 0.24177 84.507
        2 Ni2 0.2421 117.827
        2 Ni3 0.24409 147.817
        2 Ni6 0.2445 179.758
        2 Ni5 0.29512 120.803
        2 Si3 0.35895 77.468
        2 Si4 0.36743 81.857
        4 Si4 0.39431 81.816
        2 Si2 0.40727 81.323
        Si5 2 Ni8 0.23059 58.364 SiNi9 图4(m)
        2 Ni4 0.23225 95.331
        1 Ni1 0.23282 113.559
        2 Ni7 0.23849 140.868
        2 Ni8 0.24054 171.621
        2 Ni8 0.28808 119.887
        2 Si1 0.35017 77.879
        2 Si2 0.35153 76.979
        4 Si5 0.37643 80.603
        2 Si3 0.40056 74.329
        下载: 导出CSV

        心部
        原子
        壳层
        原子数
        壳层原
        子种类
        壳层原子与心部原子的距离r/nm 径向原子
        密度ρ/
        nm−3
        团簇 团簇
        构型
        Ni1 4 Si1 0.24791 203.795 Ni9Si4 图6(a)
        8 Ni1 0.24791 203.795
        Si1 12 Ni1 0.24791 203.795 SiNi12 图6(b)
        下载: 导出CSV

        Ni/Si (at.%) cluster formulas composition wt.% /at.% Vickers Hardness kgf·mm–2 Electrical Conductivity /%IACS
        2 [(Fe1/15Ni9/15Si5/15)Cu12]Cu3 95.18Cu3.52Ni0.93Si0.37Fe
        (Cu93.75Ni3.75Si2.08Fe0.42)
        258 35
        ([(Ni10/15Si5/15)Cu12]Cu3)4+([CuCu12]Cu3) 96.14Cu3.11Ni0.75Si
        (Cu95Ni3.33Si1.67)
        161 51
        ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3) 96.79Cu2.59Ni0.62Si
        (Cu95.83Ni2.78Si1.39)
        189 35
        {[(Ni10/15Si5/15)1.0602Cu12]Cu3}0.996+{[CuCu12]Cu3} 97.4Cu2.1Ni0.5Si
        (Cu96.7Ni2.2Si1.1)
        191 40
        ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3)3 98.08Cu1.55Ni0.37Si
        (Cu97.5Ni1.67Si0.83)
        172 48
        2.5 [(Fe1/14Ni9/14Si4/14)Cu12]Cu3 95.04Cu3.75Ni0.8Si0.41Fe
        (Cu93.75Ni4.01Si1.79Fe0.45)
        262 32.5
        ([(Ni10/14Si4/14)Cu12]Cu3)4+([CuCu12]Cu3) 96.03Cu3.33Ni0.64Si
        (Cu95Ni3.57Si1.43)
        201 41
        ([(Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3) 96.69Cu2.78Ni0.53Si
        (Cu95.83Ni2.98Si1.19)
        201 38
        {([(Ni10/14Si4/14)1.0602Cu12]Cu3)}0.996 +([CuCu12]Cu3) 97.39Cu2.2Ni0.41Si
        (Cu96.7Ni2.36Si0.94)
        168 41
        ([Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3)3 98.02Cu1.66Ni0.32Si
        (Cu97.5Ni1.79Si0.71)
        176 48
        3 ([(Fe1/16Ni11/16Si4/16)Cu12]Cu3) 94.93Cu4.02Ni0.7Si0.35Fe
        (Cu93.75Ni4.3Si1.56Fe0.39)
        241 30
        ([(Ni12/16Si4/16)Cu12]Cu3)4+([CuCu12]Cu3) 95.94Cu3.5Ni0.56Si
        (Cu95Ni3.75Si1.25)
        225 33
        ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3) 96.63Cu2.91Ni0.46Si
        (Cu95.83Ni3.13Si1.04)
        191 36
        {([(Ni12/16Si4/16)1.0602Cu12]Cu3)}0.996
        + ([CuCu12]Cu3)
        97.33Cu2.31Ni0.36Si
        (Cu96.7Ni2.47Si0.83)
        160 39
        ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3)3 97.98Cu1.74Ni0.28Si
        (Cu97.5Ni1.87Si0.63)
        171 47
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

      • [1] 姜福仕, 王伟华, 李鸿明, 王清, 董闯.Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 必威体育下载 , 2022, 71(20): 207101.doi:10.7498/aps.71.20221036
        [2] 包括, 马帅领, 徐春红, 崔田.过渡金属轻元素化合物高硬度多功能材料的设计. 必威体育下载 , 2017, 66(3): 036104.doi:10.7498/aps.66.036104
        [3] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯.以团簇加连接原子模型解析Cr-C共晶成分. 必威体育下载 , 2017, 66(9): 092101.doi:10.7498/aps.66.092101
        [4] 姜贝贝, 王清, 董闯.基于固溶体短程序结构的团簇式合金成分设计方法. 必威体育下载 , 2017, 66(2): 026102.doi:10.7498/aps.66.026102
        [5] 洪海莲, 董闯, 王清, 张宇, 耿遥祥.面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 必威体育下载 , 2016, 65(3): 036101.doi:10.7498/aps.65.036101
        [6] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠.170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 必威体育下载 , 2015, 64(13): 136401.doi:10.7498/aps.64.136401
        [7] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯.基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 必威体育下载 , 2014, 63(2): 028102.doi:10.7498/aps.63.028102
        [8] 韩军, 张鹏, 巩海波, 杨晓朋, 邱智文, 自敏, 曹丙强.生长条件对脉冲激光沉积制备ZnO:Al薄膜光电性能的影响. 必威体育下载 , 2013, 62(21): 216102.doi:10.7498/aps.62.216102
        [9] 吴永晟, 王兵.(BEDT-TTF)[FeBr4]晶体的制备及其物理性质的研究. 必威体育下载 , 2012, 61(5): 056104.doi:10.7498/aps.61.056104
        [10] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯.体心立方固溶体合金中的团簇+连接原子结构模型. 必威体育下载 , 2011, 60(11): 116101.doi:10.7498/aps.60.116101
        [11] 李忠虎, 李林, 朱林.W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究. 必威体育下载 , 2011, 60(10): 107102.doi:10.7498/aps.60.107102
        [12] 李珂, 董瑞新, 班戈, 韩洪文, 苏伟, 闫循领.镍离子对DNA结构和导电性的影响. 必威体育下载 , 2009, 58(9): 6477-6481.doi:10.7498/aps.58.6477
        [13] 孟宪兰, 高绪团, 渠 朕, 康大伟, 刘德胜, 解士杰.界面耦合对DNA分子电荷输运性质的影响. 必威体育下载 , 2008, 57(8): 5316-5322.doi:10.7498/aps.57.5316
        [14] 王 祺, 赵华波, 张朝晖.高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 必威体育下载 , 2008, 57(5): 3059-3063.doi:10.7498/aps.57.3059
        [15] 卢亚锋, 吴晓祖, 李青云, 周廉, 辛绵荣, 罗长勋.富Ca富Cu的Bi(Pb)-Sr-Ca-Cu-O超导电性. 必威体育下载 , 1992, 41(7): 1157-1161.doi:10.7498/aps.41.1157
        [16] 许祝安, 欧阳松, 方明虎, 王劲松, 张仕勇, 沈敏, 张其瑞.Y1-xCaxBa2Cu3-xMxO7-δ (M=Fe,Ni)体系的超导电性. 必威体育下载 , 1992, 41(9): 1510-1516.doi:10.7498/aps.41.1510
        [17] 陈世民, 孙继信.Nd-(Ce)-Cu-O的电子结构和超导电性. 必威体育下载 , 1990, 39(12): 1994-1998.doi:10.7498/aps.39.1994
        [18] 吴柏枚, 陈兆甲.非晶Nb-Ni合金的电子结构及其磁性和超导电性. 必威体育下载 , 1988, 37(1): 29-35.doi:10.7498/aps.37.29
        [19] 陈熙琛, 管惟炎, 易孙圣, 王祖仑, 林影.急冷Al-Si-Ge合金超导电性的研究. 必威体育下载 , 1983, 32(4): 446-459.doi:10.7498/aps.32.446
        [20] 管惟炎, 陈熙琛, 王祖仑, 易孙圣, 林影.急冷Al-Si合金超导电性的研究. 必威体育下载 , 1982, 31(4): 485-502.doi:10.7498/aps.31.485
      计量
      • 文章访问数:10883
      • PDF下载量:102
      • 被引次数:0
      出版历程
      • 收稿日期:2019-04-23
      • 修回日期:2019-07-15
      • 上网日期:2019-10-01
      • 刊出日期:2019-10-05

        返回文章
        返回
          Baidu
          map