搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    邵士亮, 王挺, 宋纯贺, 崔婀娜, 赵海, 姚辰

    A novel method of heart rate variability measurement

    Shao Shi-Liang, Wang Ting, Song Chun-He, Cui E-Nuo, Zhao Hai, Yao Chen
    PDF
    HTML
    导出引用
    • 心率变异性的复杂波动反映了心脏的自主调节功能. 本文提出了—ICBN方法, 该方法通过改进的自适应噪声完备集合经验模态分解方法对心率变异性信号进行分解, 得到多个模态分量, 计算每个模态分量的bubble熵得到熵值向量, 把该向量映射成复杂网络, 通过计算网络的特征参数, 对心率变异性在不同时频尺度状态下的非线性特征之间的耦合关系进行度量. 首先, 采用时域、频域和ICBN分析方法对29名充血性心力衰竭病人和29名正常窦性心律对象的心率变异性进行分析, 结果表明: 时域指标三角指数HRVTi, 频域指标LF/HF, 网络层级加权值WB, 平均点权值PW, 特征路径长度CL具有统计学差异; 基于网络层级加权值WB, 特征路径长度CL, 频域指标LF/HF和Fisher判别方法的识别模型对充血性心力衰竭病人的识别正确率达到89.66%. 然后, 又对43名房颤心律失常患者和43名正常窦性心律对象的心率变异性进行分析, 结果表明: 时域指标SDNN, pNN50, RMSSD, 频域指标LF/HF, 网络层级加权值WB, 平均点权值PW具有统计学差异; 时域指标pNN50, RMSSD, 频域指标LF/HF和网络层级加权值WB, 平均点权值PW作为特征向量, Fisher判别方法作为分类器, 对房颤心律失常患者的识别正确率达到91.86%. 综合以上实验结果可知, 本文为心率变异性的度量研究提供了一种新的思路.
      The complex fluctuation of heart rate variability reflects the autonomous regulation function of the heart. In this paper, a novel method of measuring the heart rate variability is proposed. Firstly, the heart rate variability signal is decomposed by the improved complete ensemble empirical mode decomposition with adaptive noise method, and the multiple intrinsic mode functions are obtained, and the bubble entropy of each intrinsic mode function is calculated to obtain an entropy value vector. Then, the vector is mapped to a network based on a limited penetrable horizontal visibility graph method. By calculating various characteristic parameters of the network, the coupling relationship between the nonlinear features of heart rate variability in different time-frequency scale states are studied. The characteristic parameters include mean value of aggregation coefficient (MC), the characteristic path length (CL), the topological entropy of network (TE), the network level weighted bubble value (WB), and the pseudo mean value of node weight (PW). Firstly, the heart rate variabilities of 29 patients with congestive heart failure and 29 normal sinus heart rhythm subjects are analyzed by time domain, frequency domain and ICBN analysis method, the Ttest is used for statistical analysis, and Fisher discriminant method is used for classification. The results show that the time domain triangular index HRVTI, frequency domain index LF/HF, WB, PW and CL in ICBN have statistical differences. The accuracy rate of recognition model based on WB, CL, frequency domain index LF/HF and Fisher discriminant method is 89.66%. Secondly, the heart rate variabilities of 43 patients with atrial fibrillation arrhythmia and another 43 normal sinus heart rhythm subjects are analyzed by the same methods, including the time domain analyzed method, frequency domain analyzed method, and ICBN analyzed method. Then, the T test is also used for statistical analysis, and Fisher discriminant method is used for classification. The results show that using the time domain index pNN5 and RMSSD, frequency index LF/HF, ICBN index WB and PW as the feature vectors, and the Fisher discriminant mode as the classifier, the accuracy rate of recognition for atrial fibrillation arrhythmia is 91.86%. From these results it is concluded that the ICBN method provides a new idea for the heart rate variability measurement.
          通信作者:邵士亮,shaoshiliangswu@163.com
        • 基金项目:重大科技创新项目(批准号: N161608001)资助的课题.
          Corresponding author:Shao Shi-Liang,shaoshiliangswu@163.com
        • Funds:Project supported by the Major Scientific and Technological Innovation Projects, China (Grant No. N161608001).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

      • 指标 单位 描述与定义
        SDNN ${\rm{ms}}$ 相邻正常心跳间隔的标准差${\rm{SDNN}} = {\sqrt {\dfrac{1}{N}\displaystyle \sum \limits_{i = 1}^N \left( {{\rm{RR}}{s_i} - \dfrac{1}{N}\mathop \sum \limits_{i = 1}^N {\rm{RR}}{s_i}} \right)} ^{}}$
        RMSSD ms 相邻正常心跳间隔差值的平方和均值的均方根${\rm{RMSSD}} = \sqrt {\dfrac{1}{{N - 1}}\displaystyle \sum \limits_{i = 1}^{N - 1} {{\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right)}^2}} $
        pNN50 % 相邻正常心跳间隔差值超过50毫秒的比例${\rm{PNN}}50 = \dfrac{{{\rm{num}}\left[ {\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right) > 50{\rm{ ms}}} \right]}}{{N - 1}}$
        HRVTi 相邻正常心跳间隔的总个数除以相邻正常心跳间隔直方图的高度
        下载: 导出CSV

        指标 单位 描述与定义 频率范围
        Total power ${\rm{m}}{{\rm{s}}^2}$ 所有频率范围的功率谱总和 ≤ 0.4 Hz
        VLF ${\rm{m}}{{\rm{s}}^2}$ 甚低频范围内的功率谱 0.003—0.040 Hz
        LF ${\rm{m}}{{\rm{s}}^2}$ 低频范围内的功率谱 0.04—0.15 Hz
        HF ${\rm{m}}{{\rm{s}}^2}$ 高频范围内的功率谱 0.15—0.40 Hz
        LF/HF % LF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$ 与HF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$的比值
        下载: 导出CSV

        指标 NSR1(mean$ \pm $SD) CHF(mean$ \pm $SD) 标准误差差值的95%置信区间 $p$
        下限 上限
        ICBN WB 21.853$ \pm $1.479 27.835$ \pm $7.741 3.050 8.914 0***
        PW 0.563$ \pm $0.051 0.455$ \pm $0.103 –0.151 –0.066 0***
        TE 0.956$ \pm $0.019 0.937$ \pm $0.037 –0.034 –0.005 0.009**
        CL 1.135$ \pm $0.133 0.954$ \pm $0.194 –0.268 –0.094 0***
        MC 0.684$ \pm $0.035 0.705$ \pm $0.026 –0.038 –0.006 0.009**
        时域 SDNN 81.507$ \pm $38.566 59.535$ \pm $44.76 –43.951 0.007 0.05
        pNN50 11.476$ \pm $14.676 10.772$ \pm $14.110 –8.277 6.870 0.853
        RMSSD 51.172$ \pm $54.895 60.307$ \pm $58.497 –20.707 38.976 0.542
        HRVTi 6.886$ \pm $2.452 4.093$ \pm $1.494 –3.861 –1.725 0***
        频域 TP 1.809$ \pm $4.909 1.443$ \pm $4.052 –2.734 2.001 0.758
        VLF 0.0003$ \pm $0.448 1.387$ \pm $6.214 –1.265 3.370 0.367
        LF 0.212$ \pm $0.333 0.119$ \pm $0.316 –0.263 0.078 0.281
        HF 1.597$ \pm $4.608 1.322$ \pm $3.745 –2.483 1.934 0.804
        LF/HF 0.288$ \pm $0.184 0.108$ \pm $0.083 –0.255 –0.105 0***
        注: *, **, ***分别代表$p < 0.05$$p < 0.01$, $p < 0.001$.
        下载: 导出CSV

        指标 TP TN FP FN Acc Sen Spe AUC
        WB 19 27 10 2 79.31 90.48 72.97 81.72
        PW 19 24 10 5 74.14 79.17 70.59 75.53
        CL 20 23 9 6 74.14 76.92 71.88 74.40
        HRVTi 23 19 6 10 72.41 69.70 76.00 72.85
        LF/HF 25 17 4 12 72.41 75.68 80.95 78.32
        注: TP, 被判定为CHF病人的数量; TN, 被判定为NSR1对象的数量; FP, NSR1对象被判定为CHF病人的数量; FN, CHF病人被判定为NSR1对象的数量; 正确率${\rm{Acc}} = \dfrac{{{\rm{TP + TN}}}}{{{\rm{TP \!+\! FP \!+\! TN \!+\! FN}}}} \times 100\% $; 灵敏度${\rm{Sen}} = \dfrac{{T{\rm{P}}}}{{T{\rm{P}} + {\rm{FN}}}} \times 100\% $; 特异度${\rm{Spe}} = \dfrac{{{\rm{TN}}}}{{{\rm{FP \!+\! TN}}}} \times 100\% $; ${\rm{AUC}} = \dfrac{1}{2}\left( {\dfrac{{{\rm{TP}}}}{{{\rm{TP + FN}}}}{\rm{ + }}\dfrac{{{\rm{TN}}}}{{{\rm{TN + FP}}}}} \right) \times 100\% $.
        下载: 导出CSV

        指标 TP TN FP FN Acc Sen Spe AUC
        WB&CL&LF/HF 25 27 4 2 89.66 92.59 87.1 89.85
        WB&PW&CL&HRVTi&LF/HF 24 27 5 2 87.93 92.31 84.38 88.35
        WB&PW&CL&LF/HF 24 27 5 2 87.93 92.31 84.38 88.35
        WB&PW 22 29 7 0 87.93 100 80.56 90.28
        WB&CL&HRVTi&LF/HF 25 25 4 4 86.20 86.21 86.21 86.21
        WB&PW&HRVTi&LF/HF 24 26 5 3 86.20 88.89 83.87 86.38
        WB&CL&HRVTi 25 25 4 4 86.20 86.21 86.21 86.21
        WB&PW&HRVTi 24 26 5 3 86.20 88.89 83.87 86.38
        下载: 导出CSV

        指标 NSR2(mean$ \pm $SD) AF(mean$ \pm $SD) 标准误差差值的95%置信区间 $p$
        下限 上限
        ICBN WB 21.483$ \pm $1.367 24.243$ \pm $3.105 1.731 3.789 0***
        PW 0.567$ \pm $0.074 0.454$ \pm $0.090 –0.148 –0.077 0***
        TE 0.941$ \pm $0.050 0.960$ \pm $0.010 0.004 0.035 0.013*
        CL 1.113$ \pm $0.146 0.999$ \pm $0.170 –0.183 –0.047 0.001**
        MC 0.687$ \pm $0.043 0.664$ \pm $0.032 –0.024 –0.008 0.04*
        时域 SDNN 74.698$ \pm $26.193 139.016$ \pm $62.480 10.331 43.773 0***
        pNN50 10.123$ \pm $9.610 45.495$ \pm $30.687 4.904 25.620 0***
        RMSSD 36.402$ \pm $19.003 170.926$ \pm $97.980 15.220 104.256 0***
        HRVTi 7.735$ \pm $3.210 6.049$ \pm $2.488 –2.918 –0.455 0.008**
        频域 TP 0.615$ \pm $0.612 13.493$ \pm $19.369 7.000 18.754 0.001**
        VLF 0.0002$ \pm $0.0003 0.017$ \pm $0.063 –2.256 36.147 0.083
        LF 0.157$ \pm $0.154 1.204$ \pm $1.620 0.553 1.540 0.002**
        HF 0.458$ \pm $0.515 12.272$ \pm $17.908 6.381 17.247 0.001**
        LF/HF 0.515$ \pm $0.419 0.126$ \pm $0.059 –0.519 –0.259 0***
        注: *, **, ***分别代表$p < 0.05$, $p < 0.01$, $p < 0.001$.
        下载: 导出CSV

        指标 TP TN FP FN Acc Sen Spe AUC
        WB 30 37 13 6 77.91 83.33 74.00 78.67
        PW 30 42 13 1 83.72 96.77 76.36 86.57
        SDNN 31 34 12 9 75.58 77.50 73.91 75.71
        pNN50 28 39 15 4 77.91 87.50 72.22 79.86
        RMSSD 29 33 14 10 72.09 74.36 70.21 72.29
        LFHF 42 24 1 19 76.74 68.85 96.00 82.43
        下载: 导出CSV

        指标 TP TN FP FN Acc Sen Spe AUC
        WB&PW&pNN50&RMSSD&LFHF 38 41 5 2 91.86 95.00 89.13 92.07
        WB&PW&SDNN&LFHF 38 40 5 3 90.70 92.68 88.89 90.79
        WB&PW&RMSSD&LFHF 38 40 5 3 90.70 92.68 88.89 90.79
        WB&PW&SDNN&RMSSD 37 41 6 2 90.70 94.87 87.23 91.05
        WB&PW&SDNN&pNN50&RMSSD 36 42 7 1 90.70 97.30 85.71 91.51
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

      • [1] 汪亭亭, 梁宗文, 张若曦.基于信息熵与迭代因子的复杂网络节点重要性评价方法. 必威体育下载 , 2023, 72(4): 048901.doi:10.7498/aps.72.20221878
        [2] 马金龙, 张俊峰, 张冬雯, 张红斌.基于通信序列熵的复杂网络传输容量. 必威体育下载 , 2021, 70(7): 078902.doi:10.7498/aps.70.20201300
        [3] 陈单, 石丹丹, 潘贵军.复杂网络电输运性能与通信序列熵之间的关联. 必威体育下载 , 2019, 68(11): 118901.doi:10.7498/aps.68.20190230
        [4] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林.一种改进的基于信息传播率的复杂网络影响力评估算法. 必威体育下载 , 2017, 66(20): 208901.doi:10.7498/aps.66.208901
        [5] 周建, 贾贞, 李科赞.复杂网络谱粗粒化方法的改进算法. 必威体育下载 , 2017, 66(6): 060502.doi:10.7498/aps.66.060502
        [6] 霍铖宇, 马小飞, 宁新宝.基于有限穿越水平可视图的短时睡眠心率变异性研究. 必威体育下载 , 2017, 66(16): 160502.doi:10.7498/aps.66.160502
        [7] 李勇军, 尹超, 于会, 刘尊.基于最大熵模型的微博传播网络中的链路预测. 必威体育下载 , 2016, 65(2): 020501.doi:10.7498/aps.65.020501
        [8] 董泽芹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊.基于Kendall改进的同步算法癫痫脑网络分析. 必威体育下载 , 2014, 63(20): 208705.doi:10.7498/aps.63.208705
        [9] 曾超, 蒋奇云, 陈朝阳, 徐敏.心率变异性分析在新生儿疼痛检测中的应用. 必威体育下载 , 2014, 63(20): 208704.doi:10.7498/aps.63.208704
        [10] 司峻峰, 黄晓林, 周玲玲, 刘红星.心率变异性的异方差特征研究. 必威体育下载 , 2014, 63(4): 040504.doi:10.7498/aps.63.040504
        [11] 张丽, 杨晓丽, 孙中奎.噪声环境下时滞耦合网络的广义投影滞后同步. 必威体育下载 , 2013, 62(24): 240502.doi:10.7498/aps.62.240502
        [12] 王健安.时变时滞耦合两个不同复杂网络的自适应广义同步. 必威体育下载 , 2012, 61(2): 020509.doi:10.7498/aps.61.020509
        [13] 霍铖宇, 庄建军, 黄晓林, 侯凤贞, 宁新宝.基于Poincaré差值散点图的心率变异性分析方法研究. 必威体育下载 , 2012, 61(19): 190506.doi:10.7498/aps.61.190506
        [14] 李锦, 刘大钊.昼夜节律下心率变异性信号的熵信息和谱特征. 必威体育下载 , 2012, 61(20): 208701.doi:10.7498/aps.61.208701
        [15] 宋爱玲, 黄晓林, 司峻峰, 宁新宝.符号动力学在心率变异性分析中的参数选择. 必威体育下载 , 2011, 60(2): 020509.doi:10.7498/aps.60.020509
        [16] 严碧歌, 赵婷婷.应用多尺度化的基本尺度熵分析心率变异性. 必威体育下载 , 2011, 60(7): 078701.doi:10.7498/aps.60.078701
        [17] 曾长燕, 孙梅, 田立新.基于自适应-脉冲控制方法实现时变耦合驱动-响应复杂网络的投影同步. 必威体育下载 , 2010, 59(8): 5288-5292.doi:10.7498/aps.59.5288
        [18] 李程, 汤大侃, 方勇, 孙锦涛, 丁光宏, Poon Chi-Sang, 吴国强.心率变异性谱成分的非线性本质. 必威体育下载 , 2009, 58(2): 1348-1352.doi:10.7498/aps.58.1348
        [19] 黄晓林, 崔胜忠, 宁新宝, 卞春华.心率变异性基本尺度熵的多尺度化研究. 必威体育下载 , 2009, 58(12): 8160-8165.doi:10.7498/aps.58.8160
        [20] 欧阳敏, 费 奇, 余明晖.基于复杂网络的灾害蔓延模型评价及改进. 必威体育下载 , 2008, 57(11): 6763-6770.doi:10.7498/aps.57.6763
      计量
      • 文章访问数:9599
      • PDF下载量:91
      • 被引次数:0
      出版历程
      • 收稿日期:2019-03-15
      • 修回日期:2019-06-13
      • 上网日期:2019-09-01
      • 刊出日期:2019-09-05

        返回文章
        返回
          Baidu
          map