搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    王巧霞, 王玉敏, 马日, 闫冰

    All-electron calculation of ground state vibration-rotation energy levels of7Li2(0, ±1)molecular systems

    Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing
    PDF
    HTML
    导出引用
    • 采用单参考与多参考耦合簇理论结合相关一致高斯基组计算研究了 7Li 2 (0, ±1)分子体系的电子基态的势能曲线, 计算考虑了体系所有电子的关联效应与相对论效应, 拟合得到了体系的光谱常数, 并获得了电子基态的振动-转动能级信息. 计算得到的中性与阳离子体系的光谱常数与实验值符合得很好; 对于阴离子体系, 平衡核间距的计算仍需进一步改进, 其他光谱常数符合较好. 计算结果表明, 中性和阳离子体系基态波函数具有明显的单参考组态特点, 而阴离子分子基态应采用多参考组态波函数描述. 对于基态的振动-转动能级, 与现有实验值符合得很好; 尽管各种计算方法对阴离子基态的平衡核间距计算结果仍有差异, 但振动能级间隔的结果相互符合得很好. 本文的研究可为Li 2分子体系基态, 尤其是光谱学信息很少的阴离子体系的电子结构与光谱的精确研究提供了有用的光谱信息.
      The investigation of spectroscopic information is important for understanding the mechanisms of molecular photochemical and photophysical reactions. As a prototype to study the electronic structures and spectra of diatomic molecular systems, the vibration-rotational spectra of alkali dimer and its ions have aroused considerable research interest in the last two decades. Single-reference and multi-reference coupled cluster theory in combination with correlation consistent Gaussian basis set are adopted to study the ground-state potential energy curves of 7Li 2 (0,± 1)molecular systems. The correlation effect and relativistic effect of all the electrons are taken into account in the calculation. And the spectroscopic constants, including the equilibrium internuclear distance R e, the harmonic vibrational frequency ω e, the anharmonic constant ω e x e, the equilibrium rotational constant B e, and the dissociation energy D eof the molecular system and vibration-rotational energy level information of the ground states are obtained by solving the radial Schrödinger equations. The calculated spectroscopic constants of the neutral and positive ion system accord well with the experimental values; however for the negative ion system, the calculation of equilibrium internuclear distance needs further improving, and other spectroscopic constants are consistent well with the experimental values. The present computational results indicate that the ground state wave functions of neutral and positive ion systems have obvious single reference configuration characteristics, while the ground state of negative ion molecule system should be described with multireference configuration wave functions. The vibration-rotational energy levels of ground state with different theoretical methods are in good agreement with the experimental values. The vibrational-rotational energy levels and spectroscopic constants of neutral and positive ion systems are well reproduced, and some experimental information about spectrum is still lacking. Although the difference among the equilibrium internuclear distances for the ground state of the negative ion, obtained from different theoretical methods are still existent, the results of the vibrational level interval accord well with each other. This study provides useful information about spectrum for accurately investigating the electronic structures and spectra of the ground state of Li 2molecular system and its two isotopic molecules, especially for the negative ion system with little information about spectrum.
          通信作者:马日,rma@jlu.edu.cn; 闫冰,yanbing@jlu.edu.cn
        • 基金项目:国家重点研发计划(批准号: 2017YFA0403300)、国家自然科学基金(批准号: 91750104, 11574114, 11874177)和吉林省自然科学基金(批准号: 20160101332JC)资助的课题.
          Corresponding author:Ma Ri,rma@jlu.edu.cn; Yan Bing,yanbing@jlu.edu.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 91750104, 11574114, 11874177), and the Jilin Provincial National Science Foundation, China (Grant No. 20160101332JC).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

      • Method Re ωe/cm–1 ωexe/cm–1 Be/cm–1 De/eV
        vCCSD(T)/TZa 2.6992 346.3556 2.6687 0.6596 1.038
        CCSD(T)/TZ 2.6770 350.5609 2.7163 0.6706 1.046
        CCSD(T)/QZ 2.6742 351.7784 2.7238 0.6720 1.052
        CCSD(T)/5Z 2.6734 352.0222 2.7285 0.6724 1.053
        实验b 2.6734 351.42295 2.4417 0.66824 1.060
        注:a未包含1s轨道电子关联;b激光诱导荧光傅里叶变换谱(LIF FTS)实验PKR拟合值[2,6].
        下载: 导出CSV

        Vibrational levels 本次结果 理论a 实验b
        0 0 0 0
        1 346.17 346.05 346.46
        2 687.11 686.65 687.86
        3 1022.78 1021.71 1024.08
        4 1353.13 1351.15 1355.01
        5 1678.11 1674.88 1680.54
        6 1997.67 1992.81 2000.56
        7 2311.72 2304.85 2314.95
        8 2620.21 2610.92 2623.58
        9 2923.03 2910.90 2926.35
        10 3220.09 3204.70 3223.11
        11 3511.29 3492.23 3513.74
        12 3796.49 3773.36 3798.10
        13 4075.58 4048.00 4076.05
        14 4348.39 4316.02 4347.45
        15 4614.78 4577.31 4612.16
        16 4874.55 4831.74 4870.02
        17 5127.52 5079.52 5120.86
        18 5373.46 5319.52 5364.53
        19 5612.14 5552.59 5600.84
        20 5843.27 5778.25 5829.63
        21 6066.57 5996.35 6050.69
        22 6281.67 6206.72 6263.83
        23 6488.16 6409.20 6468.84
        24 6685.58 6603.59 6665.49
        RMS 8.68(0.16%) 33.93(0.65%)
        注:aFCIPP计算值[3],bLIF FTS实验值[2,6].
        下载: 导出CSV

        v Bv/cm–1 Dv/10-4cm–1
        Expt.[2,6] This work Expt.[2,6] This work
        0 0.66907 0.66882 0.0987
        1 0.66196 0.66171 0.0991
        2 0.65479 0.65453 0.0996
        3 0.64754 0.64728 0.1002
        4 0.64019 0.63995 0.1007
        5 0.63275 0.63252 0.1014
        6 0.62521 0.62499 0.1021
        7 0.61754 0.61733 0.1028
        8 0.60974 0.60954 0.1037
        9 0.60180 0.60160 0.1046
        10 0.59368 0.59348 0.1056
        11 0.58540 0.58518 0.1068
        12 0.57692 0.57667 0.1080
        13 0.56822 0.56793 0.1093
        14 0.55918 0.55892 0.1097 0.1108
        15 0.55000 0.54961 0.1119 0.1123
        16 0.54055 0.53995 0.1143 0.1138
        17 0.53061 0.52990 0.1146 0.1152
        18 0.52044 0.51939 0.1180 0.1165
        19 0.50992 0.50834 0.1215 0.1175
        20 0.49885 0.49667 0.1246 0.1181
        21 0.48726 0.48429 0.1265 0.1185
        22 0.47845 0.47109 0.1182 0.1187
        23 0.46246 0.45698 0.1340 0.1190
        24 0.44913 0.44183 0.1401 0.1200
        下载: 导出CSV

        Species Method Re ωe/cm–1 ωexe/cm–1 Be/cm–1 De/eV
        Li2+ 本次结果a 3.0986 262.7599 1.5640 0.5005 1.297
        本次结果a2 3.1337 258.8211 1.5413 0.4893 1.279
        本次结果a3 3.1038 262.3548 1.5669 0.4988 1.294
        MPb 3.122 263.08 1.2954 0.4945 1.2976
        CIc 3.099 263.76 0.5006 1.2945
        DMCd 3.11 266.2 1.593 0.4753 1.2965
        实验[5,7] 3.11 262 ± 2 1.7 ± 0.5 0.496 ± 0.002 1.2973
        Li2 本次结果a 3.0265 230.6457 1.5881 0.5247 0.850
        本次结果a3 3.0396 231.1024 2.3115 0.5201 0.845
        DMCd 3.10 235.3 3.166 0.4652 0.7733
        MRDCIe 3.062 236.2 2.42 0.857
        CCSD(T)f 3.00 240.7 3.166 0.5238 0.9085
        实验[10] 3.094 ± 0.015 232 ± 35 0.502 ± 0.005 0.865 ± 0.022(D0)
        注:aRCCSD(T)/5Z;a2vMRCCSD/TZ + 4s2p(未包含1s的电子关联);a3MRCCSD/TZ + 4s2p(包含1s的电子关联);bmodel potential (MP) method[25];cconfiguration interaction (CI) with effective core potential[4];ddiffusion quantum Monte-Carlo (DMC) method[12];emultireference singly and doubly CI (MRDCI)[11];fCCSD(T, full)/cc-pv5z[12].
        下载: 导出CSV

        v Li2+ Li2
        理论a 理论b 理论c 本次结果 理论c 本次结果
        0 259.51 260 259.74 259.74 227.53 228.64
        1 256.30 257 256.54 256.54 222.71 223.96
        2 253.11 254 253.35 253.35 217.93 219.69
        3 249.95 251 250.19 250.19 213.21 216.12
        4 246.81 248 247.04 247.04 208.54 213.32
        5 243.68 244 243.92 243.92 203.95 211.08
        6 240.57 241 240.81 240.81 199.42 208.91
        7 237.49 236 237.72 237.72 194.97 206.46
        8 234.41 235 234.65 234.65 190.61 203.52
        9 231.35 232 231.59 231.59 186.34 200.06
        10 228.31 228 228.55 228.55 182.16 196.15
        11 225.28 226 225.51 225.51 178.08 191.88
        12 222.26 222 222.50 222.50 174.12 187.33
        13 219.24 220 219.48 219.48 170.26 182.59
        14 216.24 216 216.48 216.48 166.53 177.72
        15 213.24 214 213.48 213.48 162.92 172.77
        16 210.25 210 210.50 210.50 159.45 167.78
        17 207.26 207 207.50 207.50 156.11 162.77
        18 204.28 205 204.53 204.53 152.91 157.79
        19 201.30 201 201.55 201.55 149.87 152.82
        注:aCCSD(T, FULL)/aug-cc-Pcvqz[12];bMP[25];cDMC[12].
        下载: 导出CSV

        v Bv/cm–1 Dv/10-4cm–1
        Li2+ Li2 Li2+ Li2-
        0 0.49776 0.52021 0.07223 0.10558
        1 0.49235 0.51129 0.07168 0.10438
        2 0.48698 0.50214 0.07114 0.10106
        3 0.48164 0.49226 0.07062 0.09317
        4 0.47635 0.48106 0.07011 0.07966
        5 0.47109 0.46824 0.06961 0.06296
        6 0.46586 0.45407 0.06912 0.04741
        7 0.46067 0.43920 0.06865 0.03586
        8 0.45551 0.42426 0.06819 0.02862
        9 0.45037 0.40969 0.06775 0.02462
        10 0.44527 0.39571 0.06732 0.02265
        11 0.44019 0.38238 0.06690 0.02180
        12 0.43513 0.36971 0.06649 0.02155
        13 0.43009 0.35766 0.06611 0.02159
        14 0.42507 0.34617 0.06573 0.02177
        15 0.42007 0.33520 0.06537 0.02201
        16 0.41508 0.32469 0.06503 0.02226
        17 0.41010 0.31461 0.06470 0.02252
        18 0.40514 0.30492 0.06439 0.02276
        19 0.40018 0.29558 0.06410 0.02300
        20 0.39522 0.28656 0.06382 0.02324
        21 0.39026 0.27784 0.06356 0.02347
        22 0.38531 0.26939 0.06332 0.02370
        23 0.38035 0.26120 0.06310 0.02392
        24 0.37538 0.25324 0.06290 0.02416
        下载: 导出CSV

        v G(v)/cm–1 Bv/cm–1 Dv/10-4cm–1
        6Li7Li 6Li2 6Li7Li 6Li2 6Li7Li 6Li2
        0 0 0 0.72431 0.77978 0.1158 0.13429
        1 360 373 0.71629 0.77082 0.11635 0.13495
        2 714 741 0.70819 0.76176 0.11695 0.13568
        3 1063 1102 0.70001 0.75260 0.11761 0.13647
        4 1406 1457 0.69173 0.74333 0.11832 0.13735
        5 1743 1805 0.68333 0.73392 0.11911 0.13832
        6 2074 2148 0.67480 0.72436 0.11999 0.13939
        7 2400 2484 0.66613 0.71462 0.12095 0.14058
        8 2719 2813 0.65729 0.70469 0.12201 0.14189
        9 3032 3135 0.64827 0.69453 0.12318 0.14335
        10 3338 3451 0.63904 0.68412 0.12448 0.14496
        11 3639 3760 0.62958 0.67343 0.12591 0.14673
        12 3932 4062 0.61986 0.66242 0.12747 0.14863
        13 4219 4356 0.60984 0.65104 0.12913 0.15062
        14 4500 4643 0.59949 0.63924 0.13088 0.15262
        15 4773 4922 0.58875 0.62695 0.13262 0.1545
        16 5038 5193 0.57756 0.61407 0.13426 0.1561
        17 5297 5456 0.56584 0.60052 0.13567 0.15725
        18 5547 5710 0.55352 0.58617 0.13671 0.15786
        19 5789 5956 0.54048 0.57089 0.13733 0.15794
        20 6023 6192 0.52662 0.55456 0.13755 0.15775
        21 6249 6418 0.51182 0.53703 0.13757 0.15778
        22 6465 6633 0.49596 0.51815 0.1378 0.15879
        23 6671 6838 0.47890 0.49776 0.13886 0.16187
        24 6866 7031 0.46051 0.47564 0.14162 0.16834
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

      • [1] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭.AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 必威体育下载 , 2023, 72(16): 163101.doi:10.7498/aps.72.20230615
        [2] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋.BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 必威体育下载 , 2022, 71(10): 103101.doi:10.7498/aps.71.20220038
        [3] 高峰, 张红, 张常哲, 赵文丽, 孟庆田.SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 必威体育下载 , 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [4] 邢伟, 孙金锋, 施德恒, 朱遵略.AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 必威体育下载 , 2018, 67(19): 193101.doi:10.7498/aps.67.20180926
        [5] 邢伟, 孙金锋, 施德恒, 朱遵略.icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 必威体育下载 , 2018, 67(6): 063301.doi:10.7498/aps.67.20172114
        [6] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰.Na2+离子较低电子态势能曲线和光谱常数的理论研究. 必威体育下载 , 2018, 67(24): 243101.doi:10.7498/aps.67.20181690
        [7] 魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰.SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算. 必威体育下载 , 2016, 65(16): 163101.doi:10.7498/aps.65.163101
        [8] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 必威体育下载 , 2016, 65(3): 033102.doi:10.7498/aps.65.033102
        [9] 王杰敏, 王希娟, 陶亚萍.75As32S+和75As34S+离子的光谱常数与分子常数. 必威体育下载 , 2015, 64(24): 243101.doi:10.7498/aps.64.243101
        [10] 朱遵略, 郎建华, 乔浩.SF分子基态及低激发态势能函数与光谱常数的研究. 必威体育下载 , 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [11] 李松, 韩立波, 陈善俊, 段传喜.SN-分子离子的势能函数和光谱常数研究. 必威体育下载 , 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 必威体育下载 , 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [13] 施德恒, 牛相宏, 孙金锋, 朱遵略.BF自由基X1+和a3态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [14] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.SO+离子b4∑-态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(24): 243102.doi:10.7498/aps.61.243102
        [15] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略.理论研究B2分子X3g-和A3u态的光谱性质. 必威体育下载 , 2012, 61(20): 203101.doi:10.7498/aps.61.203101
        [16] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛.PH, PD和PT分子常数理论研究. 必威体育下载 , 2012, 61(6): 063104.doi:10.7498/aps.61.063104
        [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋.用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 必威体育下载 , 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [18] 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 必威体育下载 , 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [19] 王杰敏, 孙金锋.采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 必威体育下载 , 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [20] 钱 琪, 杨传路, 高 峰, 张晓燕.多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 必威体育下载 , 2007, 56(8): 4420-4427.doi:10.7498/aps.56.4420
      计量
      • 文章访问数:6637
      • PDF下载量:65
      • 被引次数:0
      出版历程
      • 收稿日期:2019-03-13
      • 修回日期:2019-04-10
      • 上网日期:2019-06-01
      • 刊出日期:2019-06-05

        返回文章
        返回
          Baidu
          map