搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞

Research progress of solution processed all-inorganic perovskite solar cell

Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui
PDF
HTML
导出引用
  • 太阳能光伏技术, 能实现太阳能与电能的高效转换, 是实现人类文明可持续发展的关键绿色能源技术. 其中, 有机无机杂化钙钛矿太阳能电池具有优异的光电特性、低廉的制备成本、高效的转换效率, 已成为该领域的研究前沿. 虽然有机无机杂化钙钛矿太阳能电池的光电转换效率已约高达24%, 但其体系中的有机物组分易受环境中的光、热、潮等因素影响而分解, 致使器件稳定性存在严重的缺陷, 极大地限制了钙钛矿太阳能电池的产业化进程. 因此, 如何制备高效稳定的钙钛矿太阳能电池, 是目前该领域的研究热点与难点, 而发展具有更高环境稳定性的全无机钙钛矿太阳能电池具有重要意义. 本文回顾了近年来全无机钙钛矿太阳能电池领域的研究成果, 重点审视了钙钛矿薄膜的湿法制备工艺, 并探讨了器件在光热稳定性方面的改善, 为进一步推动钙钛矿太阳能电池的实用化进程提供可行性参考.
    Photovoltaic technology, which can converse solar illumination into electricity, is crucial to the sustainable development of human civilization. Among them, the organic-inorganic hybrid perovskite solar cell (OIPSC) has become a research front due to its excellent photoelectric characteristics, low production cost and high power conversion efficiency (PCE). Although the PCE of OIPSC has exceeded 24%, the organic components in the perovskite system are sensitive to the decomposion caused by either being exposed to light or heated in high temperature environment. The stability defects have greatly limited the commercialization of perovskite solar cells. Therefore, it is urgent to improve the stability of perovskite solar cells, especially to solve the material decomposition problem. All-inorganic perovskite photovoltaic material, composed of all-inorganic elements, exhibits excellent heat and moisture resistance. Therefore, the development of all-inorganic perovskite solar cells is of great significance for solving the current stability problems in perovskite photovoltaics. In this work, we review the recent research progress of all-inorganic perovskite solar cells, discuss the solution approaches to processing all-inorganic perovskite films, and explore the enhancement of device stability. Our work provides a guideline for further promoting the device stability and PCE.
        通信作者:刘彭义,tlpy@jnu.edu.cn; 郑毅帆,yifan.zheng@pku.edu.cn;
      • 基金项目:国家自然科学基金(批准号: 11804117, 61674070)、中央高校基本科研业务费专项资金(暨南大学科研培育与创新基金)(批准号: 21618313)、广东省科技攻关计划(批准号: 2017B09090701)和博士后创新人才支持计划(批准号: 8206200013)资助的课题.
        Corresponding author:Liu Peng-Yi,tlpy@jnu.edu.cn; Zheng Yi-Fan,yifan.zheng@pku.edu.cn;
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11804117, 61674070), the Fundamental Research Funds for the Central Universities, China (Grant No. 21618313), the Key Science and Technology Program of Guangdong Province, China (Grant No. 2017B09090701), and the China Postdoctoral Innovation Talent Foundation (Grant No. 8206200013).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

    • 电池结构 制备方法 VOC/V Jsc/mA·cm–2 FF/% PCE/% 参考文献
      FTO/PEDOT:PSS/CsPbI3/PCBM/Al 溶液法 ~0.9 3 1.7 [26]
      FTO/c-TiO2/CsPbI3/Spiro-OMeTAD/Au 溶液法 0.8 12 2.9 [26]
      FTO/c-TiO2/m-TiO2/CsPbI3/Spiro-OMeTAD/Au 溶液法 ~0.6 8 1.3 [26]
      FTO/c-TiO2/CsPbI3/CuI/Au 溶液法 0.89 16.02 56.59 8.07 [149]
      FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au 溶液法 0.97 18.76 72.59 13.21 [149]
      FTO/TiO2/CsPbI3/Spiro-OMeTAD/Ag 溶液法 0.66 11.92 52.47 4.13 [39]
      FTO/c-TiO2/CsPbI3/Carbon 溶液法 0.67 14.31 48 4.65 [38]
      FTO/c-TiO2/m-TiO2/CsPbI3/Carbon 溶液法 0.58 13.74 44 3.48 [38]
      FTO/TiO2/AX-coatedCsPbI3-QDs/Spiro-OMeTAD/MoOx/Al 溶液法 1.16 15.24 76.63 13.43 [110]
      FTO/TiO2/CsPbI3QDs/Spiro-OMeTAD/MoOx/Al 溶液法 1.23 13.47 65 10.77 [23]
      MgF2/FTO/c-TiO2/m-TiO2/CsPb0.95Ca0.05I3/P3HT/Au 溶液法 0.95 17.9 80 13.5 [78]
      ITO/PTAA/zwitterion-CsPb(I0.98Cl0.02)3/PCBM/C60/BCP/Al 溶液法 1.09 14.9 70 11.4 [150]
      ITO/TiO2/CsPbBr3/Carbon 溶液法 0.64 5.3 64 3.9 [151]
      FTO/TiO2/CsPbI2Br-0.02MnCl2/PCBM/Ag 溶液法 1.172 14.37 80 13.47 [85]
      FTO/TiO2/CsPbI2Br/PTAA/Au 溶液法 1.177 14.25 80.2 13.45 [77]
      FTO/TiO2/CsPbI3QDs/PTAA/Au 溶液法 1.192 11.75 78.3 10.97 [77]
      FTO/c-TiO2/CsPbI3-0.05DETAI3/P3HT/Au 溶液法 1.06 12.21 61 7.89 [101]
      FTO/TiO2/quasi-2D Cs0.9PEA0.1PbI3/Spiro-OMeTAD/Au 溶液法 0.838 10.96 62 5.7 [128]
      FTO/NiOx/InCl3:CsPbI2Br/ZnO@C60/Ag 溶液法 1.15 15.1 78 13.57 [91]
      FTO/NiOx/CsPbI2Br/ZnO@C60/Ag 溶液法 1.1 15.1 78 12.92 [91]
      FTO/TiO2/CsPbI3/Carbon 溶液法 0.79 18.5 65 9.5 [37]
      FTO/TiO2/CsPbI3QDs/PTB7/MoOx/Ag 溶液法 1.27 12.39 80 12.55 [112]
      FTO/c-TiO2/BA2CsPb2I7/Spiro-OMeTAD/Au 溶液法 0.957 8.88 57 4.84 [127]
      FTO/TiO2/CsPb0.995Mn0.005I1.01Br1.99/Carbon 溶液法 0.99 13.15 57 7.36 [86]
      FTO/bl-TiO2/2 wt% Sn-TiO2/Cs2SnI4Br2/solid state Cs2SnI6based HTM/LPAH 溶液法 0.563 6.22 57.7 2.025 [52]
      FTO/TiO2/CsPbI2Br/CsPbI3QDs/PTAA/Au 溶液法 1.204 15.25 78.7 14.45 [77]
      FTO/c-TiO2/m-TiO2/CsPbBr3/MoS2QDs/Carbon 喷涂法 1.307 6.55 79.4 6.80 [152]
      FTO/c-TiO2/m-TiO2/CsPbIBr2/Spiro-OMeTAD/Au 喷涂法 1.121 7.9 70 6.2 [59]
      FTO/SnO2QDs/CsPbBr3/carbon 溶液法 1.572 7.68 75 9.15 [50]
      ITO/PEDOT:PSS/CsPbBr3/PCBM/Ag 溶液法 0.982 5.9 73.7 4.5 [135]
      FTO/m-TiO2/CsPbBr3/CsBi2/3Br3/carbon 溶液法 1.594 7.75 80.9 10.0 [50]
      FTO/SnO2QDs/CsPbBr3/CsSnBr3QDs/carbon 溶液法 1.610 7.8 84.4 10.6 [50]
      FTO/m-TiO2/Cs2AgBiBr6/Spiro-MeOTAD/Ag 溶液法 0.98 3.93 63 2.43 [76]
      FTO/TiO2/PTABrCsPbI3/Spiro-MeOTAD/Ag 溶液法 1.104 19.15 68.5 17.06 [27]
      FTO/TiO2/CsPbI3/Spiro-MeOTAD/Ag 溶液法 1.051 18.89 68.5 13.61 [27]
      PET/ITO/TiO2/CsPb0.96Bi0.04I3/Spiro-OMeTAD/Au 溶液-气相辅助法 1.05 15.11 72.32 11.47 [87]
      ITO/TiO2/CsPbI3/P3HT/Au 气相法 1.063 13.8 71.6 10.5 [142]
      ITO/TiO2/CsPbI3/Au 气相法 0.959 8.7 56 4.7 [46]
      ITO/C60/CsPbI2Br/TAPC/MoO3/Ag 气相法 1.15 15.2 67 11.7 [140]
      FTO/TiO2/CsPbI3/P3HT/Ag 气相法 0.79 12..06 72 6.79 [146]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

    • [1] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon.低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 必威体育下载 , 2024, 73(9): 096802.doi:10.7498/aps.73.20240082
      [2] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和.AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 必威体育下载 , 2023, 72(13): 137701.doi:10.7498/aps.72.20230113
      [3] 荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰.高负偏光照稳定性的溶液法像素级IZTO TFT. 必威体育下载 , 2022, 71(13): 138502.doi:10.7498/aps.71.20220154
      [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛.CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 必威体育下载 , 2021, 70(16): 168801.doi:10.7498/aps.70.20210353
      [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁.在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 必威体育下载 , 2021, 70(19): 198403.doi:10.7498/aps.70.20210586
      [6] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙.金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 必威体育下载 , 2020, 69(18): 187801.doi:10.7498/aps.69.20200795
      [7] 王继飞, 林东旭, 袁永波.有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 必威体育下载 , 2019, 68(15): 158801.doi:10.7498/aps.68.20190853
      [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军.扭曲二维结构钝化的钙钛矿太阳能电池. 必威体育下载 , 2019, 68(15): 158802.doi:10.7498/aps.68.20190306
      [9] 夏俊民, 梁超, 邢贵川.喷墨打印钙钛矿太阳能电池研究进展与展望. 必威体育下载 , 2019, 68(15): 158807.doi:10.7498/aps.68.20190302
      [10] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯.退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 必威体育下载 , 2016, 65(12): 128502.doi:10.7498/aps.65.128502
      [11] 夏祥, 刘喜哲.CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 必威体育下载 , 2015, 64(3): 038104.doi:10.7498/aps.64.038104
      [12] 袁怀亮, 李俊鹏, 王鸣魁.有机无机杂化固态太阳能电池的研究进展. 必威体育下载 , 2015, 64(3): 038405.doi:10.7498/aps.64.038405
      [13] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新.影响杂化钙钛矿太阳能电池稳定性的因素探讨. 必威体育下载 , 2015, 64(3): 038803.doi:10.7498/aps.64.038803
      [14] 丁美斌, 娄朝刚, 王琦龙, 孙强.GaAs量子阱太阳能电池量子效率的研究. 必威体育下载 , 2014, 63(19): 198502.doi:10.7498/aps.63.198502
      [15] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇.渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 必威体育下载 , 2014, 63(2): 028802.doi:10.7498/aps.63.028802
      [16] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政.一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 必威体育下载 , 2013, 62(10): 108801.doi:10.7498/aps.62.108801
      [17] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉.1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 必威体育下载 , 2013, 62(21): 218801.doi:10.7498/aps.62.218801
      [18] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非.Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 必威体育下载 , 2010, 59(11): 8191-8199.doi:10.7498/aps.59.8191
      [19] 罗翀, 孟志国, 王烁, 熊绍珍.溶液法铝诱导晶化制备多晶硅薄膜. 必威体育下载 , 2009, 58(9): 6560-6565.doi:10.7498/aps.58.6560
      [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯.非晶/微晶相变域硅薄膜及其太阳能电池. 必威体育下载 , 2005, 54(7): 3327-3331.doi:10.7498/aps.54.3327
    计量
    • 文章访问数:27307
    • PDF下载量:690
    • 被引次数:0
    出版历程
    • 收稿日期:2019-03-13
    • 修回日期:2019-04-04
    • 上网日期:2019-08-01
    • 刊出日期:2019-08-05

      返回文章
      返回
        Baidu
        map