\begin{document}$\mu $\end{document}, 这些值与已有的测量值具有非常好的一致性. 本文报道了12S, nP (n = 9—12)和 nD (n = 10—11)态的磁偶极超精细结构常数."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    娄冰琼, 李芳, 王沛妍, 王黎明, 唐永波

    Ab initiocalculation of hyperfine-structure constantAof Fr and evaluation of magnetic dipole moments of Fr isotopes

    Lou Bing-Qiong, Li Fang, Wang Pei-Yan, Wang Li-Ming, Tang Yong-Bo
    PDF
    HTML
    导出引用
    • 应用基于B样条基组的相对论耦合簇理论方法, 计算了 212Fr原子的 nS ( n= 7—12), nP ( n= 7—12)和 nD ( n= 6—11)态的磁偶极超精细结构常数. 与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数, 其中7P态的磁偶极超精细常数的理论值与实验值之间的差异小于1%. 在忽略场移效应对Fr原子7P态超精细结构常数的影响下, 通过结合实验值进一步定出了 207−213,220−228Fr核磁偶极矩 $\mu $ , 这些值与已有的测量值具有非常好的一致性. 本文报道了12S, nP ( n= 9—12)和 nD ( n= 10—11)态的磁偶极超精细结构常数.
      As the heaviest atom in alkali-metal elements, Fr atom has been regarded as a candidate for the search of the permanent electric dipole moment of the electron and of parity-nonconservation effects. Accurate knowledge of Fr atomic properties is of great interest. In this work, we use a relativistic coupled-cluster method to calculate the magnetic dipole hyperfine structure constants for nS ( n= 7-12), nP ( n= 7-12) and nD ( n= 6-11) states of 212Fr. A finite B-spline basis set is used to expand the Dirac radial function, including completely the single and double excitation in correlation calculation. Our results are compared with available theoretical and experimental values. The comparison shows that our method can offer accurate calculation of magnetic dipole hyperfine structure constant. For 7P state the differences between our results and experimental values are within 1%. The magnetic dipole hyperfine structure constants for 12S, nP ( n= 9-12) and nD ( n= 10-11) states are reported for the first time, which are very useful as benchmarks for experimental measurements and calculations by other theoretical methods of these quantities. In the relativistic coupled-cluster theoretical framework, we study the electron correlation effect on hyperfine-structure constant Afor the S, P, and D states of Fr. We observe that the electron correlation effect is very important for hyperfine-structure constant properties. The D state has a considerable correlation effect. At the same time, we also investigate contribution trends of individual electron correlation effects involving direct, core-polarization and pair-correlation ones in S, P, and D Rydberg series. It is found that the dominant contributions for the S 1/2, P 1/2,3/2and nD 3/2( n= 7-11) states are to from the direct effect; however, the dominant contributions for the 6D 3/2, and nD 5/2( n= 6-11) states are due to the pair-correlation and the core-polarization, respectively. For D 5/2states, there is very strong cancellation among these individual correlation effects. The knowledge of these correlation trends is useful for studying the permanent electric dipole moment and parity-nonconservation effect of Fr in future. Moreover, the magnetic dipole moment $ {\mu}$ for each of isotopes 207−213,220−228Fr is determined by combining with experimental values for magnetic dipole hyperfine structure constant of 7P state. For each of isotope 207−213Fr, our magnetic dipole moment $ {\mu}$ is perfectly consistent with the experimental value, and our uncertainties are twice smaller than those in the experiments . For each of isotope 220−228Fr, our magnetic dipole moment $ {\mu}$ has a larger uncertainty, but is still in agreement with the experimental magnetic dipole moment $ {\mu}$ .
          通信作者:唐永波,ybtang@whu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 1154094, 11774080)资助的课题.
          Corresponding author:Tang Yong-Bo,ybtang@whu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 1154094, 11774080).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

      • 能级 ${A_{{\rm{DF}}}}$ ${A_{{\rm{CCSD}}}}$ $\varDelta /$% Ref.[38] 实验值
        7S1/2 6001.76 9403.56 30.93 9124(94) 9064.2(2)[27]
        9064.4(1.5)[39]
        8S1/2 1538.03 2014.10 17.37 1986(19)
        9S1/2 631.98 792.19 13.66 784(9)
        10S1/2 321.24 396.86 11.95 419(9) 401(5)[29]
        11S1/2 185.41 225.71 11.10 212(9) 225(3)[29]
        12S1/2 116.42 141.25 10.80
        下载: 导出CSV

        能级 ${A_{{\rm{DF}}}}$ ${A_{{\rm{CCSD}}}}$ $\varDelta /$% Ref.[38] 实验值
        7P1/2 642.48 1198.10 41.96 1181(9) 1189.1(4.6)[28]
        1187.1(6.8)[39]
        1192.0(2)[32]
        8P1/2 228.04 372.04 33.66 371(5) 373.0(1)[39]
        9P1/2 106.78 167.21 30.88
        10P1/2 58.35 89.53 29.46
        11P1/2 35.26 53.38 28.51
        12P1/2 22.88 34.24 27.68
        7P3/2 51.05 97.88 43.55 96(3) 97.2(1)[27]
        97.2(1)[39]
        8P3/2 18.67 32.51 37.82 32(3) 32.8(1)[39]
        9P3/2 8.89 15.00 35.83
        10P3/2 4.91 8.15 34.75
        11P3/2 3.00 4.92 34.01
        12P3/2 1.97 3.20 33.33
        下载: 导出CSV

        能级 ${A_{{\rm{DF}}}}$ ${A_{{\rm{CCSD}}}}$ $\varDelta / $% Ref.[38] 实验值
        6D3/2 33.25 92.91 61.27 79(5)
        7D3/2 16.82 30.17 39.65 29(3)
        8D3/2 8.65 13.81 32.20 13(1) 13.0(6)[29]
        9D3/2 4.93 7.50 28.75 7(1) 7.1(7)[29]
        10D3/2 3.06 4.52 26.64
        11D3/2 2.03 2.93 24.97
        6D5/2 13.14 –53.92 126.38 –54(5)
        7D5/2 6.32 –13.64 150.21 –15(3)
        8D5/2 3.20 –5.67 161.12 –6(1) –7.1(6)[29]
        9D5/2 1.81 –2.96 166.96 –3.3(6) –3.6(4)[29]
        10D5/2 1.12 –1.72 170.59
        11D5/2 0.74 –1.10 173.16
        下载: 导出CSV

        同位素 核自旋 7P1/2 7P3/2 ${\mu}$
        ${A_{{\rm{expt}}.}}$[33] ${{\mu} _{1/2}}$ ${A_{{\rm{expt}}.}}$[33] ${{\mu} _{3/2}}$ ${{\mu} _{{\rm{present}}}}$ ${{\mu} _{{\rm{expt}}{\rm{.}}}}$[33]
        207Fr 9/2 90.7(6) 3.85(3) 3.85(3) 3.89(9)
        208Fr 7 874.8(3) 4.723(2) 72.4(5) 4.784(33) 4.753(33) 4.75(10)
        209Fr 9/2 1127.9(2) 3.914(1) 93.3(5) 3.963(21) 3.939(22) 3.95(8)
        210Fr 6 946.3(3) 4.379(1) 78.0(2) 4.418(11) 4.399(20) 4.40(9)
        211Fr 9/2 1142.1(2) 3.964(1) 94.9(3) 4.031(13) 3.998(34) 4.00(8)
        212Fr 5 1187(7) 4.577(26) 97.2(1) 4.588(5) 4.583(30) 4.62(9)
        213Fr 9/2 1150(8) 3.991(28) 95.3(3) 4.047(13) 4.019(30) 4.02(8)
        220Fr 1 –73.2(5) –0.691(5) –0.691(5) –0.67(1)
        221Fr 5/2 808(12) 1.558(23) 65.5(6) 1.545(14) 1.552(25) 1.58(3)
        222Fr 2 33(1) 0.623(19) 0.623(19) 0.63(1)
        223Fr 3/2 83.3(9) 1.179(13) 1.179(13) 1.17(2)
        224Fr 1 42.1(7) 0.397(7) 0.397(7) 0.40(1)
        225Fr 3/2 77(3) 1.090(42) 1.090(42) 1.07(2)
        226Fr 1 7(1) 0.066(9) 0.066(9) 0.071(2)
        227Fr 1/2 316(2) 1.491(9) 1.491(9) 1.50(3)
        228Fr 2 –41(2) –0.77(4) –0.77(4) –0.76(2)
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

      • [1] 钟振祥.氢分子离子超精细结构理论的综述. 必威体育下载 , 2024, 73(20): .doi:10.7498/aps.73.20241101
        [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟.B2+和B+离子的静态偶极极化率和超极化率的理论研究. 必威体育下载 , 2023, 72(14): 143101.doi:10.7498/aps.72.20221990
        [3] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国.类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 必威体育下载 , 2023, 72(22): 223101.doi:10.7498/aps.72.20230940
        [4] 王昕, 康哲铭, 刘龙, 范贤光.基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 必威体育下载 , 2020, 69(20): 200701.doi:10.7498/aps.69.20200552
        [5] 张祥, 卢本全, 李冀光, 邹宏新.Hg+离子5d106s2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 必威体育下载 , 2019, 68(4): 043101.doi:10.7498/aps.68.20182136
        [6] 任雅娜, 杨保东, 王杰, 杨光, 王军民.铯原子7S1/2态磁偶极超精细常数的测量. 必威体育下载 , 2016, 65(7): 073103.doi:10.7498/aps.65.073103
        [7] 何永林, 周效信, 李小勇.用B-样条函数研究静电场中锂原子里德伯态的性质. 必威体育下载 , 2008, 57(1): 116-123.doi:10.7498/aps.57.116
        [8] 孟慧艳, 康 帅, 史庭云, 詹明生.平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 必威体育下载 , 2007, 56(6): 3198-3204.doi:10.7498/aps.56.3198
        [9] 惠 萍.用B样条技术研究半导体微晶中激子的量子受限效应. 必威体育下载 , 2005, 54(9): 4324-4328.doi:10.7498/aps.54.4324
        [10] 陈岁元, 刘常升, 李慧莉, 崔 彤.非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 必威体育下载 , 2005, 54(9): 4157-4163.doi:10.7498/aps.54.4157
        [11] 王晓峰, 乔豪学, 刘海林, 于国萍.限制环境下类氢体系的共振增强现象. 必威体育下载 , 2005, 54(8): 3530-3534.doi:10.7498/aps.54.3530
        [12] 陈岁元, 刘常升, 傅贵勤, 王章涛, 才庆魁.高硼钢中B与Fe作用的超精细结构研究. 必威体育下载 , 2002, 51(8): 1711-1715.doi:10.7498/aps.51.1711
        [13] 韩利红, 芶秉聪, 王菲.类铍BⅡ离子激发态的相对论能量和精细结构. 必威体育下载 , 2001, 50(9): 1681-1684.doi:10.7498/aps.50.1681
        [14] 陈志骏, 马洪良, 陈淼华, 李茂生, 施 伟, 陆福全, 汤家镛.单电荷态钡离子超精细结构光谱. 必威体育下载 , 1999, 48(11): 2038-2041.doi:10.7498/aps.48.2038
        [15] 姜泽辉, 赫晓东, 韩杰才, 杜善义.均匀电场中颗粒簇偶极矩的确定. 必威体育下载 , 1999, 48(6): 1037-1043.doi:10.7498/aps.48.1037
        [16] 乔豪学, 饶建国, 李白文.氦原子关联能的B样条计算. 必威体育下载 , 1997, 46(11): 2104-2110.doi:10.7498/aps.46.2104
        [17] 朱士尧, 徐纪华, 赵淑君, 李醒.B的KαX射线谱精细结构的研究. 必威体育下载 , 1991, 40(9): 1411-1416.doi:10.7498/aps.40.1411
        [18] 潘守甫, 张凤梧.Li原子的超精细结构计算. 必威体育下载 , 1964, 20(8): 822-824.doi:10.7498/aps.20.822
        [19] 余友文, 张宗烨.关於镧La57的超精细结构. 必威体育下载 , 1958, 14(6): 488-496.doi:10.7498/aps.14.488
        [20] 赵广增, 郑志豪.水银共振線超精细结构的强度分布. 必威体育下载 , 1955, 11(4): 359-362.doi:10.7498/aps.11.359
      计量
      • 文章访问数:9763
      • PDF下载量:92
      • 被引次数:0
      出版历程
      • 收稿日期:2019-01-21
      • 修回日期:2019-03-09
      • 上网日期:2019-05-01
      • 刊出日期:2019-05-05

        返回文章
        返回
          Baidu
          map