-
采用第一性原理计算方法, 研究了二维单层硒化锗(GeSe)的5种同分异构体结构的稳定性和在应力调控下的电子性质变化规律. 计算结果表明: 5种同分异构体结构都具有热力学稳定性; α-GeSe是直接带隙半导体, β-GeSe, γ-GeSe, δ-GeSe和ε-GeSe都是间接带隙半导体. α-GeSe在应力调控下出现了直接到间接带隙的转变和半导体到金属性质的转变. β-GeSe和γ-GeSe在应力的作用下具有可调节的间接带隙范围. 当沿δ-GeSe双轴方向施加压缩应力为1%和4%时, δ-GeSe的能带从间接带隙转变成直接带隙. 通过沿ε-GeSe的扶手椅形方向施加10%的拉伸应变, 出现了从间接带隙到直接带隙的转变; 继续增加拉伸应变到20%, 能带结构一直保持直接带隙的特征, 其可调范围为1.21—1.44 eV. 沿δ-GeSe双轴方向施加10%拉伸应变时, 也出现了从间接带隙到直接带隙的转变; 该直接带隙在双轴拉伸应变增加到19%前一直保持, 可调范围为0.61—1.19 eV.Using first-principles calculations, we investigate the stability and electronic properties of five isomers of two-dimensional (2D) GeSe monolayer under in-plane strain. Our calculated results show that the five isomers of GeSe monolayer are all stable. It is found that the α-GeSe has a direct band gap, while each of the β-GeSe, γ-GeSe, δ-GeSe and ε-GeSe possesses an indirect band gap. By applying compressive or tensile uniaxial and biaxial strain to the five GeSe isomers, the indirect-to-direct transition in band gap is found. In the α-GeSe, the changes from indirect-to-direct and semiconducting-to-metallic are both found under an applied strain. In the 2D β-GeSe and γ-GeSe, an adjustable range of indirect band gap under strain is found. Moreover, a direct band gap in the δ-GeSe is found separately under the biaxial compression strain of σ xy= –2% and σ xy= –4%. By applying a tensile strain of 10% along the armchair direction in ε-GeSe, a transition from an indirect to direct band gap occurs. When the tensile strain is continuously increased to 20%, the band structure of ε-GeSe maintains direct character. This direct band gap can be tuned from 1.21 eV to 1.44 eV. When 10% tensile strain is applied along the biaxial direction, the transition in band gap from indirect-to-direct also occurs. Our results indicate that the direct band gap can be tuned from 0.61 eV to 1.19 eV when the tensile strain is increased from 10% to 19% in ε-GeSe.
-
Keywords:
- first-principles/
- monolayer GeSe/
- strain/
- electronic property
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] -
α-GeSe β-GeSe γ-GeSe δ-GeSe ε-GeSe E0 73.88 39.55 77.92 151.22 179.68 Ef/i/meV 0.037 0.016 0.041 0.077 0.664 Ef/i/E0 0.05% 0.04% 0.05% 0.05% 0.03% α-GeSe β-GeSe γ-GeSe δ-GeSe ε-GeSe a/Å 4.27 3.68 3.67 5.80 6.85 b/Å 3.98 3.68 5.89 5.84 6.43 h/Å 2.52 1.45 1.76 2.52 1.72 |Eb|/eV·atom–1 4.14 4.12 4.11 4.13 4.08 Eg/eV 1.14 2.30 1.77 1.58 1.78 Strain/% d1/Å d2/Å d3/Å θ1 θ2 Eg/eV σx 2.68 2.51 2.60 85.6 86.7 1.56 (ind.) –10 σy 2.60 2.58 2.56 98.2 85.1 1.41 (ind.) σxy 2.60 2.52 2.52 89.6 77.8 0.85 (ind.) σx 2.67 2.51 2.60 87.4 87.2 1.61 (ind.) –8 σy 2.61 2.57 2.57 97.1 85.8 1.55 (ind.) σxy 2.60 2.52 2.54 90.2 80.3 1.32 (ind.) σx 2.67 2.52 2.60 89.1 87.8 1.66 (ind.) –6 σy 2.61 2.56 2.58 96.3 86.6 1.67 (ind.) σxy 2.61 2.52 2.56 90.8 82.8 1.71 (ind.) σx 2.66 2.52 2.60 90.9 88.3 1.72 (ind.) –4 σy 2.62 2.55 2.59 95.5 87.5 1.77 (ind.) σxy 2.62 2.53 2.57 91.7 85.5 1.90 (ind.) σx 2.65 2.53 2.60 92.4 88.8 1.75 (ind.) –2 σy 2.63 2.55 2.59 94.8 88.4 1.84 (ind.) σxy 2.64 2.53 2.59 92.7 87.4 1.89 (ind.) 0 2.65 2.54 2.60 94.1 89.3 1.78 (ind.) σx 2.65 2.55 2.60 95.8 89.7 1.75 (ind.) 2 σy 2.67 2.54 2.60 93.3 90.5 1.62 (ind.) σxy 2.67 2.55 2.60 95.8 91.3 1.62 (ind.) σx 2.64 2.56 2.60 97.2 90.2 1.66 (ind.) 4 σy 2.69 2.54 2.60 93.2 91.6 1.48 (ind.) σxy 2.68 2.56 2.60 98.0 92.6 1.50 (ind.) σx 2.63 2.57 2.61 99.0 90.2 1.60 (ind.) 6 σy 2.71 2.54 2.60 92.8 92.8 1.35 (ind.) σxy 2.70 2.57 2.60 100.2 93.7 1.40 (ind.) σx 2.63 2.59 2.61 100.8 90.4 1.51 (ind.) 8 σy 2.74 2.54 2.60 92.8 94.1 1.24 (ind.) σxy 2.71 2.59 2.60 102.6 94.9 1.30 (ind.) σx 2.62 2.60 2.61 103.5 89.9 1.44 (dir.) 10 σy 2.77 2.54 2.59 93.0 95.5 1.16 (ind.) σxy 2.73 2.60 2.60 105.1 96.1 1.19 (dir.) σx 2.62 2.61 2.62 105.5 90.0 1.37 (dir.) 12 σy 2.80 2.54 2.59 92.9 96.8 1.09 (ind.) σxy 2.75 2.61 2.59 107.7 97.6 1.00 (dir.) σx 2.61 2.62 2.62 108.2 89.4 1.32 (dir.) 14 σy 2.84 2.53 2.58 93.2 98.3 1.05 (ind.) σxy 2.77 2.62 2.58 110.3 99.4 0.84 (dir.) σx 2.60 2.63 2.63 110.8 89.0 1.28 (dir.) 16 σy 2.87 2.53 2.57 93.4 100.0 1.03 (ind.) σxy 2.78 2.64 2.57 112.6 101.7 0.67 (dir.) σx 2.60 2.63 2.63 113.1 88.8 1.24 (dir.) 18 σy 2.92 2.52 2.56 93.5 102.0 0.98 (ind.) σxy 2.79 2.65 2.55 115.2 103.7 0.63 (dir.) σx 2.59 2.64 2.64 115.6 88.3 1.21 (dir.) 20 σy 2.96 2.51 2.54 94.1 103.8 0.94 (ind.) σxy 2.72 2.70 2.54 123.7 108.1 0.99 (ind.) σx= 20% σy= 20% σxy= 20% E0/meV 165.49 156.07 132.56 Ef/i/meV 2.650 0.030 0.005 Ef/i/E0 1.60% 0.02% 0.03% -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50]
计量
- 文章访问数:9441
- PDF下载量:174
- 被引次数:0