-
采用基于密度泛函理论加 U的计算方法, 研究了Ce和O空位单(共)掺杂锐钛矿相TiO 2的电子结构和光吸收性质. 计算结果表明, Ce和O空位共掺杂TiO 2的带隙中出现了杂质能级, 且带隙窄化为2.67 eV, 明显比纯TiO 2和Ce, O空位单掺杂TiO 2的要小, 因而可提高TiO 2对可见光的响应能力, 使TiO 2的光吸收范围增加. 光吸收谱显示, 掺杂后TiO 2的光吸收边发生了显著红移; 在400.0—677.1 nm的可见光区, 共掺杂体系的光吸收强度显著高于纯TiO 2和Ce单掺杂TiO 2, 而略低于O空位单掺杂TiO 2. 此外, Ce掺杂TiO 2中引入O空位后, TiO 2的导带边从−0.27 eV变化为−0.32 eV, 这表明TiO 2的导带边的还原能力得到了加强. 计算结果为Ce和O空位共掺杂TiO 2在可见光光解水方面的进一步研究提供了有力的理论依据.
The crystal structures, defect formation energy, electronic structures and optical properties of oxygen vacancy and/or Ce-(co)doped anatase TiO 2are investigated by using density functional theory plus Ucalculations. The calculated results indicate that lattice distortion induces the enhanced octahedral dipole moment in Ce doped TiO 2crystal when introducing oxygen vacancy into the lattice of the TiO 2crystal, which is effective for separating the photo-excited electron-hole pairs; meanwhile, compared with the valence band of pure TiO 2and TiO 2mono-doped separately with Ce and oxygen vacancy, the valence band of TiO 2co-doped with Ce and oxygen vacancy broadens drastically, which is mainly contributed from the electronic states of Ce 5d, Ti 4s and O 2p in the valence band shifting toward the lower energy direction. As a result, Ce doped TiO 2with oxygen vacancy is beneficial to the mobility of photo-generated carriers in TiO 2. Similarly, the anti-bonding states also move toward the lower band energy direction, which are formed by the mixture of Ce 4f, Ce 5d, Ti 3d, and O 2p orbits in the conduction band. Due to these shifts, the energy gap of Ce and oxygen vacancy codoped TiO 2is narrowed to 2.67 eV with the emerge of the occupied impurity energy levels near Fermi level. Because of the above-mentioned excellence features, the absorption spectra for doped systems exhibit remarkable red-shift, especially, the intensity of optical absorption of TiO 2co-doped with Ce and oxygen vacancy in the visible region and the infra-red region are obviously stronger than those of the Ce mono-doped TiO 2. When introducing oxygen vacancy into the Ce-doped system, the calculated conduction band energy edge position changes from −0.27 eV to −0.32 eV, which implies that the reducing power of the conduction band edge of TiO 2is remarkably enhanced. More fascinatingly, the calculated band energy edges for the Ce and oxygen vacancy codoped TiO 2can satisfy the basic requirement for water splitting under visible light irradiation. In conclusion, Ce and oxygen vacancy co-doped system can effectively strengthen the photo-catalytic activity of TiO 2and improve the utilization of the solar light; and our calculated results provide a powerful theoretical basis for the applications of the Ce and oxygen vacancy co-doped anatase TiO 2in visible-light-driven water splitting in the future research. -
Keywords:
- Ce doping/
- oxygen vacancy/
- anatase TiO2/
- electronic structure/
- first-principles
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] -
参量 GGA GGA +U LDA LDA +U Experiment Theory Error% a/nm 0.3791 0.3897 0.3745 0.3806 0.3785[26] 0.3831[29] 0.5548 b/nm 0.3791 0.3897 0.3745 0.3806 0.3785[26] 0.3831[29] 0.5548 c/nm 0.9805 0.9925 0.9447 0.9674 0.9514[26] 0.9631[29] 1.6817 c/a 2.5860 2.5470 2.5230 2.5410 2.5140[26] 2.5140[29] 1.0739 u 0.2050 0.2050 0.2080 0.2070 — 0.2050[29] — dap/nm 0.2011 0.2031 0.1966 0.2005 0.1980[27] 0.1973[29] 1.2626 deq/nm 0.1946 0.2000 0.1914 0.1948 0.1934[28] 0.1930[29] 0.7238 Eg/eV 2.18 3.18 2.16 3.12 3.32[24] 3.23[29] — 注:dap,deq分别表示Ti—O长键和短键的键长; 误差指LDA +U方法相对于实验值的误差. 参量 Ce-TiO2 OV-TiO2 Ce/OV-TiO2 This work Experiment Other theory This work This work a/nm 0.3822 0.3789[25] 0.3980[31] 0.3789 0.3827 b/nm 0.3833 — 0.3980[31] 0.3793 0.3798 c/nm 0.9956 0.9509[25] 0.9757[31] 0.9824 1.0090 dap/nm 0.2225 — 0.2273[32] 0.2012 0.2233 deq/nm 0.2183 — 0.2119[32] 0.1946 0.2252 注:dap,deq分别表示Ce-TiO2, Ce/OV-TiO2中Ce—O长键和短键的键长, 对于OV-TiO2则表示Ti—O长键和短键的平均键长. Model Ef/eV q/e p/Debye Ti-rich O-rich O Ti Ce Pure TiO2 — — −0.720 1.440 — 0.0000 Ce-TiO2 10.42 1.16 −0.719 1.405 1.920 0.0168 OV-TiO2 1.02 5.65 −0.727 1.412 — 0.0668 Ce/OV-TiO2 −15.84 −20.48 −0.725 1.373 1.920 0.0251 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44]
计量
- 文章访问数:10138
- PDF下载量:0
- 被引次数:0