\begin{document}$\gamma + \gamma′$\end{document}相组织结构. 根据面心立方固溶体的团簇加连接原子结构模型, Ni基高温合金的成分式即最稳定的化学近程序结构单元可以描述为第一近邻配位多面体团簇加上次近邻的三个连接原子. 本文应用类似方法, 首次给出了. 利用原子半径和团簇共振模型, 可计算出Co-Al-W三元合金的团簇成分通式, 为[Al-Co12](Co,Al,W)3, 即以Al为中心原子、Co为壳层原子的[Al-Co12]团簇加上三个连接原子. 对于多元合金, 需要先将元素进行分类: 溶剂元素—类Co元素\begin{document}$\overline {{\rm{Co}}} $\end{document} (Co, Cr, Fe, Re, Ni, Ir, Ru)和溶质元素—类Al元素\begin{document}$\overline {{\rm{Al}}} $\end{document} (Al, W, Mo, Ta, Ti, Nb, V等); 进而根据合金元素的配分行为, 将类Co元素分为\begin{document}${\overline {{\rm{Co}}} ^\gamma }$\end{document} (Cr, Fe, Re)和\begin{document}${\overline {{\rm{Co}}} ^{\gamma′}}$\end{document} (Ni, Ir, Ru); 根据混合焓, 将类Al元素分为Al, \begin{document}$\overline {\rm{W}} $\end{document} (W, Mo)和\begin{document}$\overline {{\rm{Ta}}} $\end{document} (Ta, Ti, Nb, V等). 由此, 任何多元Co-Al-W基高温合金均可简化为\begin{document}$\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $\end{document}伪二元体系或者\begin{document}$\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-}\left( {\overline {\rm{W}}, \overline {{\rm{Ta}}} } \right)$\end{document}伪三元体系, 其团簇加连接原子成分式为\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]$\end{document}\begin{document}$\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$\end{document} (或\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$\end{document} = \begin{document}${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$\end{document} at.%). 其中, \begin{document}${\gamma }$\end{document}\begin{document}${\gamma′}$\end{document}相的团簇成分式分别为\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\!\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$\end{document} (或\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$\end{document} = \begin{document}${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}$\end{document}\begin{document}${\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$\end{document} at.%)和\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$\end{document} (或\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$\end{document} = \begin{document}$ {\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$\end{document} at.%). 例如, Co82Al9W9合金的团簇成分式为[Al-Co12]Co1.1Al0.4W1.4 (~[Al-Co12]Co1.0Al0.5W1.5), 其中\begin{document}${\gamma }$\end{document}相的团簇成分式为[Al-Co12]Co1.6Al0.4W1.0 (~[Al-Co12]Co1.5Al0.5W1.0), \begin{document}${\gamma′}$\end{document}相的团簇成分式为[Al-Co12]Co0.3Al0.5W2.2 (~[Al-Co12]Co0.5Al0.5W2.0)."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    马启慧, 张宇, 王清, 董红刚, 董闯

    Cluster formulas of Co-Al-W-base superalloys

    Ma Qi-Hui, Zhang Yu, Wang Qing, Dong Hong-Gang, Dong Chuang
    PDF
    HTML
    导出引用
    • Co-Al-W基高温合金具有类似于Ni基高温合金的 $\gamma + \gamma′$ 相组织结构. 根据面心立方固溶体的团簇加连接原子结构模型, Ni基高温合金的成分式即最稳定的化学近程序结构单元可以描述为第一近邻配位多面体团簇加上次近邻的三个连接原子. 本文应用类似方法, 首次给出了. 利用原子半径和团簇共振模型, 可计算出Co-Al-W三元合金的团簇成分通式, 为[Al-Co 12](Co,Al,W) 3, 即以Al为中心原子、Co为壳层原子的[Al-Co 12]团簇加上三个连接原子. 对于多元合金, 需要先将元素进行分类: 溶剂元素—类Co元素 $\overline {{\rm{Co}}} $ (Co, Cr, Fe, Re, Ni, Ir, Ru)和溶质元素—类Al元素 $\overline {{\rm{Al}}} $ (Al, W, Mo, Ta, Ti, Nb, V等); 进而根据合金元素的配分行为, 将类Co元素分为 ${\overline {{\rm{Co}}} ^\gamma }$ (Cr, Fe, Re)和 ${\overline {{\rm{Co}}} ^{\gamma′}}$ (Ni, Ir, Ru); 根据混合焓, 将类Al元素分为Al, $\overline {\rm{W}} $ (W, Mo)和 $\overline {{\rm{Ta}}} $ (Ta, Ti, Nb, V等). 由此, 任何多元Co-Al-W基高温合金均可简化为 $\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $ 伪二元体系或者 $\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-}\left( {\overline {\rm{W}}, \overline {{\rm{Ta}}} } \right)$ 伪三元体系, 其团簇加连接原子成分式为 $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]$ $\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$ (或 $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$ = ${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$ at.%). 其中, ${\gamma }$ ${\gamma′}$ 相的团簇成分式分别为 $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\!\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$ (或 $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$ = ${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}$ ${\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$ at.%)和 $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$ (或 $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$ = $ {\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$ at.%). 例如, Co 82Al 9W 9合金的团簇成分式为[Al-Co 12]Co 1.1Al 0.4W 1.4(~[Al-Co 12]Co 1.0Al 0.5W 1.5), 其中 ${\gamma }$ 相的团簇成分式为[Al-Co 12]Co 1.6Al 0.4W 1.0(~[Al-Co 12]Co 1.5Al 0.5W 1.0), ${\gamma′}$ 相的团簇成分式为[Al-Co 12]Co 0.3Al 0.5W 2.2(~[Al-Co 12]Co 0.5Al 0.5W 2.0).
      Having a $\gamma /\gamma′ $ microstructure similar to Ni-base superalloys and also including various alloying elements such as Al and W, new Co-base superalloy, namely Co-Al-W-base alloy, has been widely studied as a kind of potential alternative of Ni-base superalloy, which is the most important high-temperature structural material in industrial applications. Besides, Co-Al-W-base alloy has also excellent mechanical properties, for example, creep properties comparable to those of the first-generation Ni-base single crystal superalloys. In our previous work, the ideal composition formula of Ni-base superalloy has been obtained by applying the cluster-plus-glue-atom structure model of faced centered cubic solid solution, which shows that the most stable chemical short-range-order unit is composed of a nearest-neighbor cluster and three next-neighbor glue atoms. In this paper, the ideal cluster formula of Co-Al-W-base superalloy is addressed by using the same approach. Based on cluster-plus-glue-atom model theory, according to lattice constants and atom radii, calculations are carried out. The results show that the atom radius of Al is equal to Covalent radius (0.126 nm) and for $\gamma′ $ phase the atom radius of W changes obviously (0.1316 nm). After analyzing atomic radii, the chemical formula for Co-Al-W ternary alloy is calculated to be [Al-Co 12](Co,Al,W) 3, which signifies an Al centered atom and twelve Co nearest-neighbored cluster atoms plus three glue atoms, which is in good consistence with that for Ni-base single crystal superalloy. For multi-element alloy, the alloying elements are classified, according to the heat of mixing between the alloying elements and Co as well as partition behavior of alloying elements, as solvent elements-Co-like elements $\overline {{\rm{Co}}} $ (Co, Ni, Ir, Ru, Cr, Fe, and Re) and solute elements-Al-like elements $\overline {{\rm{Al}}} $ (Al, W, Mo, Ta, Ti, Nb, V, etc.). The solvent elements can be divided into two kinds according to partition behaves: ${\overline {{\rm{Co}}} ^{\gamma }}$ (Cr, Fe, and Re) and ${\overline {{\rm{Co}}} ^{\gamma′}}$ (Ni, Ir, and Ru). The latter is further grouped into Al, ${\overline {\rm{W}} }$ (W and Mo, which have weaker heat of mixing than Al-Co ) and ${\overline {{\rm{Ta}}} }$ (Ta, Ti, Nb, V, etc., which have stronger heat of mixing than Al-Co). Then all chemically complex Co-Al-W-base superalloys are simplified into $\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $ pseudo-binary or $\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-} \left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)$ pseudo-ternary system. Within the framework of the cluster-plus-glue-atom formulism and by analyzing the compositions of alloy, it is shown that the Co-Al-W-base superalloy satisfies the ideal formula $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$ = ${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$ at.%). In the same way, those of $\gamma $ and $\gamma′ $ phases are respectively $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$ = ${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$ at.%) and $\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$ (or $\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$ = ${\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$ at.%). For example, alloy Co 82Al 9W 9and its $\gamma $ and $\gamma′ $ phases are formulated respectively as [Al-Co 12]Co 1.1Al 0.4W 1.4(~ [Al-Co 12]Co 1.0Al 0.5W 1.5), [Al-Co 12]Co 1.6Al 0.4W 1.0(~ [Al-Co 12]Co 1.5Al 0.5W 1.0), and [Al-Co 12]Co 0.3Al 0.5W 2.2(~[Al-Co 12]Co 0.5Al 0.5W 2.0).
          通信作者:董闯,dong@dlut.edu.cn
        • 基金项目:国家自然科学基金航空重大研究计划培育项目(批准号: 91860108)和国家自然科学基金(批准号: 11674045)资助的课题.
          Corresponding author:Dong Chuang,dong@dlut.edu.cn
        • Funds:Project supported by the Aviation Major Research Program Cultivation Project of the National Natural Science Foundation of China (Grant No. 91860108) and the National Natural Science Foundation of China (Grant No. 11674045).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

      • 合金成分/at.% $\gamma $相成分/at.% 晶格常数实验值/nm 晶格常数计算值/nm 绝对误差$\varDelta $
        Co82Al9W9 Co81.7Al9.3W9 0.3580 0.3579 0.0001
        Co83Al9W8 Co81.9Al10.0W8.1 0.3576 0.3575 0.0001
        Co80Al9W11 Co80.7Al9.2W10.2 0.3586 0.3588 0.0002
        Co74Al9W9Cr8 Co73.9Al8.0W6.8Cr11.2 0.3578 0.3575 0.0003
        Co64Al9W9Ni18 Co69.1Al6.8W7.0Ni16.9 0.3577 0.3562 0.0015
        Co65Al9W9Ni9Cr8 Co66.7Al7.8W6.7Ni8.3Cr10.7 0.3581 0.3584 0.0003
        Co56Al9W9Ni18Cr8 Co59.2Al6.0W7.4Ni15.6Cr11.8 0.3583 0.3581 0.0002
        Co72.5Ni10Al10W7.5 Co76.2Al8.7W5.4Ni9.7 0.3578 0.3562 0.0016
        下载: 导出CSV

        合金成分/at.% $\gamma′ $相成分/at.% 晶格常数实验值/nm W原子半径/nm
        Co82Al9W9 Co77.49Al10.03W12.48 0.3594 0.1317
        Co83Al9W8 Co76.6Al9.4W14 0.3589 0.1306
        Co80Al9W11 Co75.1Al9.1W15.8 0.3595 0.1311
        Co74Al9W9Cr8 Co73.9Al9.4W10.4Cr6.3 0.3587 0.1314
        Co64Al9W9Ni18 Co58.9Al10.8W11.0Ni19.3 0.3590 0.1317
        Co65Al9W9Ni9Cr8 Co64.2Al10.1W9.9Ni9.4Cr6.4 0.3587 0.1317
        Co56Al9W9Ni18Cr8 Co54.5Al10.5W9.7Ni19.7Cr5.6 0.3587 0.1319
        Co72.5Ni10Al10W7.5 Co68.8Al10.8W9.9Ni10.5 0.3593 0.1324
        下载: 导出CSV

        元素
        分类
        合金化
        元素
        混合焓
        $\Delta H$/kJ·mol
        元素配分
        系数K
        ${\overline {{\rm{Co}}} ^{\gamma }}$ Cr –4 0.48—0.60
        Fe –1
        Re 2
        ${\overline {{\rm{Co}}} ^{\gamma′ }}$ Ni –2 1.08—1.27
        Ru –1
        Ir –3
        Al Al –19 0.93—1.60
        ${\overline {\rm{W}} }$ W –1 1.03—6.21
        Mo –5
        ${\overline {{\rm{Ta}}} }$ V –14 1.57—8.67
        Ta –24
        Nb –25
        Ti –28
        Sc –30
        Hf –35
        下载: 导出CSV

        合金成分/at.% 团簇成分式-[团簇](连接原子)3 连接原子
        Co78Al10W10Ta2 [Al-Co12]Co0.5Al0.6W1.6Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.5}{\rm{A}}{{\rm{l}}_{0.6}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co78Al9W10Mo3 [Al-Co12]Co0.5Al0.4W1.6Mo0.5 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.5}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{2.1}}$
        Co79Al9W10Ti2 [Al-Co12]Co0.6Al0.4W1.6Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W10V2 [Al-Co12]Co0.6Al0.4W1.6V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W10Si2 [Al-Co12]Co0.6Al0.4W1.6Si0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W8Ta2Nb2 [Al-Co12]Co0.6Al0.4W1.3Ta0.3Nb0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79Al9W8Ta2V2 [Al-Co12]Co0.6Al0.4W1.3Ta0.3V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79Al8W9Ta2Ti2 [Al-Co12]Co0.6Al0.3W1.4Ta0.3Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\rm{A}}{{\rm{l}}_{0.3}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.6}}$
        Co79.5Al9.7W10.8 [Al-Co12]Co0.7Al0.6W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.7}{\rm{A}}{{\rm{l}}_{0.6}}{\overline {\rm{W}} _{1.7}}$
        Co79.9Al9.4W10.7 [Al-Co12]Co0.8Al0.5W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.7}}$
        Co80Al9W11 [Al-Co12]Co0.8Al0.4W1.8 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.8}}$
        Co80Al9W9Ti2 [Al-Co12]Co0.8Al0.4W1.4Ti0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80Al9W9V2B0.04 [Al-Co12]Co0.8Al0.4W1.4V0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80Al9W9Ta2 [Al-Co12]Co0.8Al0.4W1.4Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co80.3Al9.3W10.4 [Al-Co12]Co0.8Al0.5W1.7 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.7}}$
        Co80.5Al9W10Si0.5 [Al-Co12]Co0.9Al0.4W1.6Si0.1 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.9}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}{\overline {{\rm{Ta}}} _{0.1}}$
        Co81Al9W9Mo1B0.04 [Al-Co12]Co1.0Al0.4W1.4Mo0.2 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}$
        Co81Al9W8Ta2 [Al-Co12]Co1.0Al0.4W1.3Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co81.3Al9.2W9.5 [Al-Co12]Co1.0Al0.5W1.5 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.5}}$
        Co81.5Al9W9Nb0.5 [Al-Co12]Co1.0Al0.4W1.4Nb0.1 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}{\overline {{\rm{Ta}}} _{0.1}}$
        Co81.5Al9W5.5Ta2Mo2 [Al-Co12]Co1.0Al0.4W0.9Ta0.3Mo0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.0}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.2}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co82Al9W9 [Al-Co12]Co1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co72Al9W9Ni10 [Al-Co11.7Ni0.3]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co82Al9W7.5Mo1.5 [Al-Co12]Co1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co80Al9W9Cr2B0.04 [Al-Co12]Co0.8Cr0.3Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.8}{\overline {{\rm{Co}}} ^\gamma }_{0.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.6}}$
        Co78Al9W9Cr4 [Al-Co12]Co0.6Cr0.6Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\overline {{\rm{Co}}} ^\gamma }_{0.6}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co73Al9W9Ni9 [Al-Co11.7Ni0.3]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co64Al9W9Ni18 [Al-Co10.2Ni1.8]Ni1.1Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co81.8Al9.2W9 [Al-Co12]Co1.1Al0.5W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.1}{\rm{A}}{{\rm{l}}_{0.5}}{\overline {\rm{W}} _{1.4}}$
        Co72.5Al10W7.5Ni10 [Al-Co11.6Ni0.4]Ni1.2Al0.4W1.4 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.2}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.4}}$
        Co81.5Al9W5.5Ta2Ir2 [Al-Co2]Co1.0Al0.4W0.9Ta0.3Ir0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{1.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{0.9}}{\overline {{\rm{Ta}}} _{0.3}}$
        Co79Al9W8Ta2Cr2 [Al-Co12]Co0.6Cr0.3Al0.4W1.3Ta0.3 ${\overline {{\rm{Co}}} ^{\gamma′ }}_{0.6}{\overline {{\rm{Co}}} ^\gamma }_{0.3}{\rm{A}}{{\rm{l}}_{0.4}}{\overline {\rm{W}} _{1.3}}{\overline {{\rm{Ta}}} _{0.3}}$
        下载: 导出CSV

        合金成分/at.% $\gamma $相团簇成分式 $\gamma′ $相团簇成分式
        Co82Al9W9 [Al-Co12]Co1.6Al0.4W1.0 [Al-Co12]Co0.3Al0.5W2.2
        Co78Al9W9Cr4 [Al-Co12]Co0.9Al0.3W0.9Cr0.9 [Al-Co12]Co0.2Al0.5W1.8Cr0.5
        Co73Al9W9Ni18 [Al-Co11.1Ni0.9]Al0.1W1.1Ni1.8 [Al-Co9.4Ni2.6]Al0.7W1.8Ni0.5
        Co79.5Al9.7W10.8 [Al-Co12]Co1.7Al0.4W0..9 [Al-Co12]Co0.4Al0.6W2.0
        Co80Al9W9Ti2 [Al-Co12]Co1.6Al0.4W0.8Ti0.2 [Al-Co12]Co0.2Al0.4W1.9Ti0.4
        Co80Al9W9Ta2 [Al-Co12]Co1.8Al0.4W0.7Ta0.1 [Al-Co12]Co0.2Al0.4W1.9Ta0.5
        Co79Al8W9Ta2Ti2 [Al-Co12]Co2.0Al0.3W0.5Ta0.04Ti0.1 [Al-Co12]Co0.1Al0.4W1.9Ta0.3Ti0.3
        Co78Al10W10Ta2 [Al-Co12]Co1.6Al0.7W0.7Ta0.1 [Al-Co12]Al0.7W1.9Ta0.4
        Co78Al9W10Mo3 [Al-Co12]Co1.7Al0.1W0.8Mo0.4 [Al-Co12]Co0.2Al0.6W1.7Mo0.5
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

      • [1] 姜福仕, 王伟华, 李鸿明, 王清, 董闯.Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 必威体育下载 , 2022, 71(20): 207101.doi:10.7498/aps.71.20221036
        [2] 张宇文, 邓永和, 文大东, 赵鹤平, 高明.Al原子在Ni基衬底表面的扩散及团簇的形成. 必威体育下载 , 2020, 69(13): 136601.doi:10.7498/aps.69.20200120
        [3] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄.氧化物玻璃中的类分子结构单元. 必威体育下载 , 2020, 69(13): 136101.doi:10.7498/aps.69.20191892
        [4] 王浩玉, 农智升, 王继杰, 朱景川.AlxCrFeNiTi系高熵合金成分和弹性性质关系. 必威体育下载 , 2019, 68(3): 036101.doi:10.7498/aps.68.20181893
        [5] 姜贝贝, 王清, 董闯.基于固溶体短程序结构的团簇式合金成分设计方法. 必威体育下载 , 2017, 66(2): 026102.doi:10.7498/aps.66.026102
        [6] 钱圣男, 董闯.Mg-Al系工业合金牌号的成分式解析. 必威体育下载 , 2017, 66(13): 136103.doi:10.7498/aps.66.136103
        [7] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯.以团簇加连接原子模型解析Cr-C共晶成分. 必威体育下载 , 2017, 66(9): 092101.doi:10.7498/aps.66.092101
        [8] 洪海莲, 董闯, 王清, 张宇, 耿遥祥.面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 必威体育下载 , 2016, 65(3): 036101.doi:10.7498/aps.65.036101
        [9] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯.基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 必威体育下载 , 2014, 63(2): 028102.doi:10.7498/aps.63.028102
        [10] 陈季香, 羌建兵, 王清, 董闯.以最大原子密度定义合金相中的第一近邻团簇. 必威体育下载 , 2012, 61(4): 046102.doi:10.7498/aps.61.046102
        [11] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯.源于团簇-共振模型的理想金属玻璃电子化学势均衡. 必威体育下载 , 2012, 61(3): 036402.doi:10.7498/aps.61.036402
        [12] 邵琛玮, 王振华, 李艳男, 赵骞, 张林.AuCu249合金团簇热稳定性的原子尺度计算研究. 必威体育下载 , 2011, 60(8): 083602.doi:10.7498/aps.60.083602
        [13] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯.体心立方固溶体合金中的团簇+连接原子结构模型. 必威体育下载 , 2011, 60(11): 116101.doi:10.7498/aps.60.116101
        [14] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒.基于成分连续变化计算黏度的合金系临界冷速模型. 必威体育下载 , 2007, 56(3): 1543-1548.doi:10.7498/aps.56.1543
        [15] 王 清, 羌建兵, 王英敏, 夏俊海, 林 哲, 张新房, 董 闯.Cu-Zr-Ti系Cu基块体非晶合金的形成和成分优化. 必威体育下载 , 2006, 55(1): 378-385.doi:10.7498/aps.55.378
        [16] 沈保根, 沃峰, 杨林原, 赵见高, 郭慧群, 詹文山, 陈金昌.成分和过渡金属对FeZr基非晶态合金晶化温度的影响. 必威体育下载 , 1990, 39(9): 1488-1493.doi:10.7498/aps.39.1488
        [17] 王京汉, 李德修, 陈金昌.非晶态合金Ni64B36结构的计算机模拟(Ⅰ)——合金中的化学短程序. 必威体育下载 , 1986, 35(4): 482-488.doi:10.7498/aps.35.482
        [18] 傅卓武.具有近程序的N元无序材料理论. 必威体育下载 , 1985, 34(4): 493-502.doi:10.7498/aps.34.493
        [19] 赵有祥, 刘志毅, 王守证, 郭树权.高压高温处理对A15Nb3(Al,Ge)结构成分及其超导性能的影响. 必威体育下载 , 1983, 32(1): 108-117.doi:10.7498/aps.32.108
        [20] 高树濬, 钱知强.均匀合金自扩散的准化学模型. 必威体育下载 , 1965, 21(3): 622-629.doi:10.7498/aps.21.622
      计量
      • 文章访问数:8197
      • PDF下载量:64
      • 被引次数:0
      出版历程
      • 收稿日期:2018-05-28
      • 修回日期:2019-01-15
      • 上网日期:2019-03-12
      • 刊出日期:2019-03-20

        返回文章
        返回
          Baidu
          map