搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟

Review of fabrication methods, physical properties, and applications of twisted bilayer graphene

Lin Kui-Xin, Li Duo-Sheng, Ye Yin, Jiang Wu-Gui, Ye Zhi-Guo, Qinghua Qin, Zou Wei
PDF
导出引用
  • 石墨烯是一种准二维蜂窝网状结构新型纳米材料,石墨烯的层数和构型对其性能产生重要影响.固体中准粒子的量子状态由其本身的对称性质所决定,扭转双层石墨烯打破了对称性,引起了强烈的层间耦合作用,改变了扭转双层石墨烯的电子能带、声子色散、形成能垒等物性,产生了独特的性能,如可以连续调控带隙0–250 meV,光电效应的响应度相比于单层石墨烯提高了80倍,因此对扭转双层石墨烯功能化研究有重大意义.本文同时还论述了扭转双层石墨烯向类金刚石转变的理论与实验研究进展,发现扭转双层石墨烯呈现出具有类金刚石结构与性能特征.进一步阐述调控扭转双层石墨烯的扭转角度对其内在性能的影响,揭示这种新型纳米结构在原子层次的行为特征.最后介绍了如何调控制备扭转双层石墨,分析其调控机理,讨论了各种制备工艺的不足与发展趋势.因此本文从扭转双层石墨烯的输运性质、晶体结构转变、制备三个方面展开阐述,并对其在先进电子器件领域的潜在应用进行了展望.
    Graphene is a novel quasi-two-dimensional honeycomb nanomaterial. It exhibits excellent properties and modification options, and the layer-number and configuration of graphene have an important influence on its performance. The quantum state of a quasi-particle in a solid is determined by its own symmetrical nature. The twisted bilayer graphene breaks the symmetry and produces a long-period Moiré pattern due to the slight misalignment between the honeycomb lattices of each layer, which leads to a strong coupling between the layers, and thus changing some physical properties of graphene such as electronic energy band, phonon dispersion, and energy barrier and presents unique performance. For example, the superconductor phase transition can be excited by the gate voltage. The band gap can be continuously controlled in a range of 0-250 meV, and the responsiveness of the photoelectric effect is 80 times higher than that of the single-layer graphene. Therefore, it is of great significance to study the functionalization of twisted bilayer graphene. At the same time, the theoretical and experimental research progress of the transformation of the twisted bilayer layered graphene into the diamond-like carbon is also discussed, which presents the structure and performance of diamond-like carbon. It is found that hydrogenated twisted bilayer graphene bonds between layers and forms sp 3hybrid bonds, which transforms into a diamond-like structure. The number and distribution of sp 3hybrid bonds have an important influence on its performance. The twist angle of twisted bilayer graphene affects its phase transition structure and energy barrier. The effect of the twist angle of the twisted bilayer graphene on its intrinsic properties is further evaluated and reveals the behavioral characteristics of this novel nanomaterial. The unique properties of twisted bilayer graphene give rise to a wide range of applications. It is the key to the application of twisted bilayer graphene with a large area, high quality and controlled twist angle. The mechanical exfoliation method can prepare angle-controlled twisted bilayer graphene, but there are problems such as low efficiency and inability to prepare large-area twisted bilayer graphene. The large-area twisted bilayer graphene can be prepared directly by epitaxial growth and chemical vapor deposition methods, but the twist angle cannot be precisely controlled.
    Finally, we mention how to control the preparation of twisted bilayer graphene, analyze its regulation mechanism, and discuss the shortcomings and development trends of those processes. Therefore, in this paper, the three aspects of the transport properties, crystal structure transformation and preparation of twisted bilayer graphene are expounded, and its potential application in the field of advanced electronic devices is also prospected.
      • 基金项目:国家自然科学基金(批准号:51562027,11772145)、江西省优势科技创新团队计划(批准号:20181BCB24007)、江西省教育厅科学技术研究项目(批准号:GJJ170586)、和江苏省精密与微细制造技术重点实验室开放基金(批准号:JKL2015001)资助的课题.
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 51562027, 11772145), the Advantage Technology Innovation Team of Jiangxi Province, China (Grant No. 20181BCB24007), the Technology Project of Department of Education of Jiangxi Province, China (Grant No. GJJ170586), and the Jiangsu Key Laboratory of Precision and Micro Manufacturing Technology Foundation, China (Grant No. JKL2015001).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克.石墨烯线缺陷局域形变对谷输运性质的影响. 必威体育下载 , 2023, 72(16): 166101.doi:10.7498/aps.72.20230736
      [2] 明知非, 宋海洋, 安敏荣.基于分子动力学模拟的石墨烯镁基复合材料力学行为. 必威体育下载 , 2022, 71(8): 086201.doi:10.7498/aps.71.20211753
      [3] 邓旭良, 冀先飞, 王德君, 黄玲琴.石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 必威体育下载 , 2022, 71(5): 058102.doi:10.7498/aps.71.20211796
      [4] 刘青阳, 徐青松, 李瑞.氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 必威体育下载 , 2022, 71(14): 146801.doi:10.7498/aps.71.20212309
      [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎.边界对石墨烯量子点非线性光学性质的影响. 必威体育下载 , 2021, 70(5): 057801.doi:10.7498/aps.70.20201643
      [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博.基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 必威体育下载 , 2020, 69(22): 226102.doi:10.7498/aps.69.20200781
      [7] 张玉响, 彭倚天, 郎浩杰.基于原子力显微镜的石墨烯表面图案化摩擦调控. 必威体育下载 , 2020, 69(10): 106801.doi:10.7498/aps.69.20200124
      [8] 吕新宇, 李志强.石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 必威体育下载 , 2019, 68(22): 220303.doi:10.7498/aps.68.20191317
      [9] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨.基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 必威体育下载 , 2018, 67(11): 118102.doi:10.7498/aps.67.20180125
      [10] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明.石墨烯纳米带的制备与电学特性调控. 必威体育下载 , 2017, 66(21): 218103.doi:10.7498/aps.66.218103
      [11] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰.石墨烯纳米结构的制备及带隙调控研究. 必威体育下载 , 2017, 66(21): 217301.doi:10.7498/aps.66.217301
      [12] 张婷婷, 成蒙, 杨蓉, 张广宇.锯齿形石墨烯反点网络加工与输运性质研究. 必威体育下载 , 2017, 66(21): 216103.doi:10.7498/aps.66.216103
      [13] 禹忠, 党忠, 柯熙政, 崔真.N/B掺杂石墨烯的光学与电学性质. 必威体育下载 , 2016, 65(24): 248103.doi:10.7498/aps.65.248103
      [14] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰.石墨烯基双曲色散特异材料的负折射与体等离子体性质. 必威体育下载 , 2015, 64(6): 067301.doi:10.7498/aps.64.067301
      [15] 金芹, 董海明, 韩奎, 王雪峰.石墨烯超快动态光学性质. 必威体育下载 , 2015, 64(23): 237801.doi:10.7498/aps.64.237801
      [16] 叶振强, 曹炳阳, 过增元.石墨烯的声子热学性质研究. 必威体育下载 , 2014, 63(15): 154704.doi:10.7498/aps.63.154704
      [17] 陈英良, 冯小波, 侯德东.单层与双层石墨烯的光学吸收性质研究. 必威体育下载 , 2013, 62(18): 187301.doi:10.7498/aps.62.187301
      [18] 董海明.掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 必威体育下载 , 2013, 62(23): 237804.doi:10.7498/aps.62.237804
      [19] 姚志东, 李炜, 高先龙.点缺陷扶手型石墨烯量子点的电子性质研究. 必威体育下载 , 2012, 61(11): 117105.doi:10.7498/aps.61.117105
      [20] 韩同伟, 贺鹏飞.石墨烯弛豫性能的分子动力学模拟. 必威体育下载 , 2010, 59(5): 3408-3413.doi:10.7498/aps.59.3408
    计量
    • 文章访问数:10735
    • PDF下载量:664
    • 被引次数:0
    出版历程
    • 收稿日期:2018-07-26
    • 修回日期:2018-10-14
    • 刊出日期:2019-12-20

      返回文章
      返回
        Baidu
        map