搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

孔令尧

Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions

Kong Ling-Yao
PDF
导出引用
  • 具有非平庸拓扑性的新型磁结构斯格明子,由于其拓扑稳定性、尺寸小、低电流驱动等方面的显著优势,有望应用于自旋电子学储存器件.拓扑和凝聚态物理学的结合,使得斯格明子展现出很多有趣的拓扑物理现象,吸引了众多的研究兴趣,同时这些性质也是其电流驱动下动力学特点的重要影响因素.本文从斯格明子的拓扑物理学基础及其自旋电子学器件应用相关动力学两个方面介绍了相关研究进展.在拓扑物理基础方面,介绍了斯格明子的拓扑霍尔效应、斯格明子霍尔效应以及自旋轨道转矩等拓扑性质,由此讨论了斯格明子的动力学性质及其计算方法;在动力学方面,从非均匀电流驱动生成斯格明子、电流驱动下的稳定输运、产生湮灭过程的人工控制几个赛道存储应用关心的问题简要地介绍了相关微磁学模拟研究最新进展.
    Skyrmions, as a nontrivial topological magnetic structure, have the advantages of topological stability, small size and low driving electrical current, showing potential applications in spintronic memory device. There are several mechanisms for skyrmion formation in magnets. One major mechanism is, in chiral-lattice ferromagnets, the competition between the Dzyaloshinskii-Moriya and ferromagnetic exchange interactions, due to the lack of spatial inversion symmetry. The combination of topology and condensed physics demonstrates various new topological phenomena of skyrmions, which also determine their dynamics. In this review, recent progress on the topological physics foundation of Skyrmions, as well as their dynamics of application in spintronics devices, is reviewed. The topological physics foundations of skyrmions is introduced. Firstly, the structure of skyrmions, which shows a special nontrivial topology in the real space, is presented accompanied with the formation of skyrmions caused by Dzyaloshinskii Moriya interactions in chiral magnets. Secondly, due to the importance of the describable method of the topology of a skyrmion, the topological charge, that characterize the topology, as well as the calculation method are introduced. Also, the arising topological stability is discussed here. Then, the typical topological effects arising from the topology of a skyrmion, including topological Hall effect and the skyrmion Hall effect are reviewed. The next is the introduction of the helical and the spiral spin configuration, the alternatives for Bloch and Nal type skyrmions respectively, which show up under lower external magnetic field with the same interaction. Also the phase transition of the helical/spiral state to skyrmions and the Monte Carlo method to simulate the spin configuration of a chiral magnet are introduced. At last, the spin orbital torque and the spin transfer torque, that describe the driven effect of a skyrmion by an electrical current or a thermal field, are reviewed. The consequence dynamics of skyrmions, the Landau-LifshitzGilbert equation, are also introduced. The recent progress of typical dynamics of skyrmions on several concerned problems in practical applications are reviewed. The applications in spintronics memory require skyrmions have steady transportation driven by electrical current and controllable creation and annihilation process. Firstly, skyrmion can be generated by the spatial nonuniform electric current with a certain geometry constrain. Especially for the Nal type skyrmion, nonuniformity of the spin orbital torque, come from the non-uniform electric current, play an important role in the skyrmion generation process. Secondly, skyrmion moves with a perpendicular velocity under an electrical current, because of the skyrmion Hall effect. So the elimination of skyrmion Hall effect is practically concerned to make the transportation steady. The anti-ferromagnetic skyrmion and antiferromagnetic coupled skyrmion bilayer are found with no skyrmion Hall effect by have two opposite component cancel out. Finally, with topological stability, skyrmions are hard to convert from and to a nontrivial topological spin configuration at low temperature. So the manipulation of skyrmion creation and annihilation are discussed accompanied with their difference of Bloch and Nal type skyrmiom.
        通信作者:孔令尧,LingyaoKong@163.com
      • 基金项目:国家自然科学基金(批准号:11504351)资助的课题.
        Corresponding author:Kong Ling-Yao,LingyaoKong@163.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11504351).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1] 刘恩克.磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 必威体育下载 , 2024, 73(1): 017103.doi:10.7498/aps.73.20231711
      [2] 杨昆.分数量子霍尔液体中的几何自由度及类引力子元激发. 必威体育下载 , 2024, 0(0): .doi:10.7498/aps.73.20240994
      [3] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力.离子辐照对材料磁性的调控及其应用. 必威体育下载 , 2024, 73(13): 136101.doi:10.7498/aps.73.20240541
      [4] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊.基于拓扑/二维量子材料的自旋电子器件. 必威体育下载 , 2024, 73(1): 017505.doi:10.7498/aps.73.20231166
      [5] 方静云, 孙庆丰.石墨烯p-n结在磁场中的电输运热耗散. 必威体育下载 , 2022, 71(12): 127203.doi:10.7498/aps.71.20220029
      [6] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰.拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 必威体育下载 , 2022, 71(19): 194101.doi:10.7498/aps.71.20220353
      [7] 吕新宇, 李志强.石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 必威体育下载 , 2019, 68(22): 220303.doi:10.7498/aps.68.20191317
      [8] 王子, 张丹妹, 任捷.声子系统中弹性波与热输运的拓扑与非互易现象. 必威体育下载 , 2019, 68(22): 220302.doi:10.7498/aps.68.20191463
      [9] 胡杨凡, 万学进, 王彪.磁性斯格明子晶格的磁弹现象与机理. 必威体育下载 , 2018, 67(13): 136201.doi:10.7498/aps.67.20180251
      [10] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光.斯格明子电子学的研究进展. 必威体育下载 , 2018, 67(13): 131205.doi:10.7498/aps.67.20180554
      [11] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳.磁斯格明子器件及其应用进展. 必威体育下载 , 2018, 67(13): 137505.doi:10.7498/aps.67.20180894
      [12] 王文彬, 朱银燕, 殷立峰, 沈健.复杂氧化物中电子相分离的量子调控. 必威体育下载 , 2018, 67(22): 227502.doi:10.7498/aps.67.20182007
      [13] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳.磁斯格明子的微磁学研究进展和应用. 必威体育下载 , 2018, 67(13): 137504.doi:10.7498/aps.67.20180165
      [14] 刘艺舟, 臧佳栋.磁性斯格明子的研究现状和展望. 必威体育下载 , 2018, 67(13): 131201.doi:10.7498/aps.67.20180619
      [15] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋.磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 必威体育下载 , 2018, 67(13): 137508.doi:10.7498/aps.67.20180513
      [16] 李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨.纳米结构中磁斯格明子的原位电子全息研究. 必威体育下载 , 2018, 67(13): 131203.doi:10.7498/aps.67.20180426
      [17] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒.宽温域跨室温磁斯格明子材料的发现及器件研究. 必威体育下载 , 2018, 67(13): 137509.doi:10.7498/aps.67.20180419
      [18] 贾子源, 杨玉婷, 季立宇, 杭志宏.类石墨烯复杂晶胞光子晶体中的确定性界面态. 必威体育下载 , 2017, 66(22): 227802.doi:10.7498/aps.66.227802
      [19] 陈泽国, 吴莹.声子晶体中的多重拓扑相. 必威体育下载 , 2017, 66(22): 227804.doi:10.7498/aps.66.227804
      [20] 孙晓晨, 何程, 卢明辉, 陈延峰.人工带隙材料的拓扑性质. 必威体育下载 , 2017, 66(22): 224203.doi:10.7498/aps.66.224203
    计量
    • 文章访问数:7975
    • PDF下载量:669
    • 被引次数:0
    出版历程
    • 收稿日期:2018-01-31
    • 修回日期:2018-03-18
    • 刊出日期:2018-07-05

      返回文章
      返回
        Baidu
        map