搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

颜志猛, 王静, 郭健宏

Low-bias oscillations of shot noise as signatures of Majorana zero modes

Yan Zhi-Meng, Wang Jing, Guo Jian-Hong
PDF
导出引用
  • Majorana零能量模式是自身的反粒子,在拓扑量子计算中有重要应用.本文研究量子点与拓扑超导纳米线混合结构,通过量子点的输运电荷检测Majorana零模式.利用量子主方程方法,发现有无Majorana零模式的电流与散粒噪声存在明显差别.零模式导致稳态电流差呈反对称,在零偏压处显示反常电导峰.电流差随零模式分裂能的增大而减小,随量子点与零模式耦合的增强而增大.另一方面,零模式导致低压散粒噪声相干振荡,零频噪声显著增强.分裂能导致相干振荡愈加明显且零频噪声减小,而量子点与零模式的耦合使零频噪声增强.当量子点与电极非对称耦合时,零模式使电子由反聚束到聚束输运,亚泊松噪声增强为超泊松噪声.稳态电流差结合低压振荡的散粒噪声能够揭示Majorana零模式是否存在.
    Majorana zero-energy modes are their own antiparticles, which are potential building blocks of topological quantum computing. Recently, there has been growing the interest in searching for Majorana zero modes in condensed matter physics. Semiconductor-superconductor hybrid systems have received particular attention because of easy realization and high-degree experimental control. The Majorana zero-energy modes are predicted to appear at two ends of a semiconductor nanowire, in the proximity of an s-wave superconductor and under a proper external magnetic field. Experimental signatures of Majorana zero modes in semiconductor-superconductor systems typically consist of zero-bias conductance peaks in tunneling spectra. So far it is universally received that an ideal semiconductor-superconductor hybrid structure should possess Majorana zero-energy modes. However, an unambiguous verification remains elusive because zero-bias conductance peaks can also have non-topological origins, such as Kondo effect, Andreev bound states or disorder effect. Therefore, it is important to investigate additional evidences to conclusively confirm the presence of Majorana zero modes in the hybrid solid state devices. It has been suggested that the Majorana-quantum dot hybrid system might be one of the solutions to the problem. Up to now, various Majorana-dot hybrid devices have been proposed to detect the existence of Majorana zero modes. Most of these studies mainly focused on the limits of transport at zero temperature, large bias voltage or zero frequency shot noise. Then a natural question is how the current correlations between the electrons transport through the topological nanowire, especially still in the zero-bias regime. In this paper, a specific spinless model consisting of a quantum dot tunnel-coupled to topological nanowire is considered. We present a systematic investigation of the electron transport by using a particle-number resolved master equation. We pay particular attention to the effects of Majorana's dynamics on the current fluctuations (shot noise) at nonzero temperature and finite bias voltage as well as at finite frequencies, especially in the low-bias regime. It is shown that the difference between the electrode currents combined with the low-bias oscillations of finite-frequency shot noise can identify Majorana zero modes from the usual resonant-tunneling levels. When there exist Majorana zero modes, on the one hand, the current difference depends on the asymmetry of electron tunneling rate. The asymmetric behaviors can expose the essential features of the Majorana zero modes since the symmetric current difference is zero. And the zero-bias conductance peak appears for the asymmetric coupling. Moreover, as the Majorana splitting energy increases, the current difference is suppressed while it is increased with the dot-wire coupling increasing. On the other hand, the dynamics of Majorana coherent oscillations between the dot and the wire is revealed in the finite-frequency shot noise. Due to the existence of Majorana zero modes the finite-frequency shot noise shows oscillations with a pronounced zero-frequency noise enhancement. Especially in the low-bias regime, the noise spectrum still exhibits an oscillation behavior which is absent from the large-bias voltage limit. Furthermore, with the Majorana splitting energy increasing, the oscillations of shot noise become more obvious, but the zero-frequency peak is lowered. When the dot is asymmetrically coupled to the electrode, the shot noise gradually changes into the super-Poissonian statistics from the sub-Poissonian statistics. This indicates the crossover from antibunched to bunched electron transport. As a result, the combination of the current difference and the low-bias oscillations of finite-frequency shot noise allows one to probe the presence of Majorana zero modes. It is therefore expected that the findings of this work can offer additional guides for experiments to identify signatures of Majorana zero modes in solid state sy
        通信作者:郭健宏,gjhaso@163.com
      • 基金项目:北京市教委科研基金(批准号:KM201210028008)资助的课题.
        Corresponding author:Guo Jian-Hong,gjhaso@163.com
      • Funds:Project supported by the Scientific Research Foundation of Beijing Education Commission, China (Grant No. KM201210028008).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

    • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华.用于扫描隧道显微镜的低噪声前置电流放大器. 必威体育下载 , 2024, 73(13): 130702.doi:10.7498/aps.73.20240560
      [2] 张梦, 姚若河, 刘玉荣, 耿魁伟.短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 必威体育下载 , 2020, 69(17): 177102.doi:10.7498/aps.69.20200497
      [3] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠.基于量子点接触的开放双量子点系统电子转移特性. 必威体育下载 , 2020, 69(4): 040504.doi:10.7498/aps.69.20191718
      [4] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶.ZrS2量子点: 制备、结构及光学特性. 必威体育下载 , 2019, 68(14): 148501.doi:10.7498/aps.68.20190680
      [5] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力.极低温散粒噪声测试系统及隧道结噪声测量. 必威体育下载 , 2019, 68(7): 070702.doi:10.7498/aps.68.20190114
      [6] 周洋, 郭健宏.双量子点结构中Majorana费米子的噪声特性. 必威体育下载 , 2015, 64(16): 167302.doi:10.7498/aps.64.167302
      [7] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌.含有量子点的双波长LED的光谱调控. 必威体育下载 , 2013, 62(11): 117304.doi:10.7498/aps.62.117304
      [8] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪.准弹道输运纳米MOSFET散粒噪声的抑制研究. 必威体育下载 , 2012, 61(12): 127202.doi:10.7498/aps.61.127202
      [9] 琚鑫, 郭健宏.点间耦合强度对三耦合量子点系统微分电导的影响. 必威体育下载 , 2011, 60(5): 057302.doi:10.7498/aps.60.057302
      [10] 唐冬和, 杜磊, 王婷岚, 陈华, 陈文豪.纳米尺度MOSFET过剩噪声的定性分析. 必威体育下载 , 2011, 60(10): 107201.doi:10.7498/aps.60.107201
      [11] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚.电子器件散粒噪声测试方法研究. 必威体育下载 , 2011, 60(5): 050704.doi:10.7498/aps.60.050704
      [12] 梁志鹏, 董正超.半导体/磁性d波超导隧道结中的散粒噪声. 必威体育下载 , 2010, 59(2): 1288-1293.doi:10.7498/aps.59.1288
      [13] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧.双量子点电荷比特的散粒噪声谱. 必威体育下载 , 2010, 59(5): 2971-2975.doi:10.7498/aps.59.2971
      [14] 陈华, 杜磊, 庄奕琪, 牛文娟.Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 必威体育下载 , 2009, 58(8): 5685-5692.doi:10.7498/aps.58.5685
      [15] 陈 华, 杜 磊, 庄奕琪.相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 必威体育下载 , 2008, 57(4): 2438-2444.doi:10.7498/aps.57.2438
      [16] 安兴涛, 李玉现, 刘建军.介观物理系统中的噪声. 必威体育下载 , 2007, 56(7): 4105-4112.doi:10.7498/aps.56.4105
      [17] 邓宇翔, 颜晓红, 唐娜斯.量子点环的电子输运研究. 必威体育下载 , 2006, 55(4): 2027-2032.doi:10.7498/aps.55.2027
      [18] 侯春风, 郭汝海.椭圆柱形量子点的能级结构. 必威体育下载 , 2005, 54(5): 1972-1976.doi:10.7498/aps.54.1972
      [19] 张志勇, 王太宏.用散粒噪声测量碳纳米管中Luttinger参数. 必威体育下载 , 2004, 53(3): 942-946.doi:10.7498/aps.53.942
      [20] 董正超, 邢定钰, 董锦明.铁磁-超导隧道结中的散粒噪声. 必威体育下载 , 2001, 50(3): 556-560.doi:10.7498/aps.50.556
    计量
    • 文章访问数:6440
    • PDF下载量:152
    • 被引次数:0
    出版历程
    • 收稿日期:2017-11-02
    • 修回日期:2018-07-03
    • 刊出日期:2019-09-20

      返回文章
      返回
        Baidu
        map