搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

袁晨晨

Bonding nature and the origin of ductility of metallic glasses

Yuan Chen-Chen
PDF
导出引用
  • 由于缺乏位错、晶界等典型的晶格缺陷,金属玻璃体系中承载力的形变单元为短程序或中程序原子团簇,键的强度及成键方向是影响原子间协调变形能力主要因素.本文通过与晶态合金对比,指出金属玻璃中原子键合方式与宏观力学性能的潜在关系,综述了金属材料电子结构与力学性能内在关系的最新研究进展,并系统介绍了金属玻璃电子结构特征、表征参量和主要测试手段,使读者对金属玻璃体系中原子间的键态特征有较清晰的认识,对进一步探索本征塑性较好的金属玻璃体系具有一定指导意义.
    Understanding the structure-property relationship of metallic glasses (MGs) at an atomic- or electronic level is a challenging topic in condensed matter physics. MGs usually exhibit low macroscopic plasticity, owing to the localized plastic flow in nano- and micro-meter scale shear bands upon deformation, which impedes their wide application as new structural materials. Thus, a detailed description of internal structure and establishing the structure-property relationship would underpin our knowledge of the mechanisms for the ductility/brittleness of MGs and further improve their plasticity. Due to the lack of structural defects such as dislocations and grain boundaries, the short- or middle-ranged ordered clusters are the typical deformation units in MGs, where the bonding strength and direction between atoms are the key factors that affect the cooperative displacements inside deformation unit. However, the bonding nature of MGs and their structure-property relationship are little studied systematically, which hinders our comprehensive understanding the basic problems about mechanical behaviors of MGs, such as fracture and plasticity deformation mechanism.In this paper, the potential correlation between the flexibility of bonding and ductility of MGs is discussed in detail. The first section gives a simple introduction of this topic. In the second section, the latest research progress of the electronic structural study of MGs is presented. Here, the corresponding studies of electronic structures of crystal alloys and their relationship with the mechanical properties are also presented for comparison. In the third section, the traditional and new experimental techniques employed for electronic structure measurements are presented, such as X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy and auger electron spectroscopy and the parameters such as nuclear magnetic resonance knight shift, susceptibility (χ) and specific heat (C) are also given in order to introduce electronic structure analysis methods of MGs and further reveal the bonding character of MGs and recent experimental findings of the relationship between the electronic structure and the mechanical properties of MGs.Numerous studies show that in the typical transition metal (TM)—metalloid metallic glass systems, the bond flexibility or mobility of atoms at the tip of crack that depends on the degree of bonding hybridization, determines the intrinsic plasticity versus brittleness. For instance, in these transition metal (TM)-based MGs, when metalloid element M with sp-element shells is alloyed in the TM matrix, the s-density of states (DOS) at M sites is scattered far below the Fermi level due to the pd hybridization between the p orbitals of M element and the d orbitals of TM. This causes the reduction of s-DOS at the Fermi energy (gs(EF)) at the solute M sites and exhibits a strong character. Thus, it is proposed that the gs(EF) can be employed as an effective order parameter to characterize the nature of bonding, especially in the aspect of evaluating bond flexibilities in amorphous alloys. This shows that the plastic flow and fracture process of MGs on an atomic scale can be well described using a simple bonding model where the deformation process is accompanied with the broken-down and reforming of atomic bonding inside short- or middleranged ordered clusters, since the defects are absent in MGs. We hope that this introduction can provide a much clearer picture of the bonding character of MGs, and further guide us in understanding the mechanism for ductile-to-brittle transition in MGs and exploring the novel MGs with intrinsic plasticity.directional boning
        通信作者:袁晨晨,yuanchenchenneu@163.com
      • 基金项目:国家自然科学基金(批准号:51601038,51631003)、江苏省自然科学基金(批准号:BK20171354)、国家重点基础研究发展计划(批准号:2016YFB0300502)和中央高校基本科研业务费(批准号:2242017K40189)资助的课题.
        Corresponding author:Yuan Chen-Chen,yuanchenchenneu@163.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 51601038, 51631003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171354), the National Basic Research Program of China (Grant No. 2016YFB0300502), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2242017K40189).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

    • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗.局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 必威体育下载 , 2022, 71(5): 058101.doi:10.7498/aps.71.20211304
      [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗.局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211304
      [3] 刘琪, 管鹏飞.La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 必威体育下载 , 2018, 67(17): 178101.doi:10.7498/aps.67.20180992
      [4] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德.高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 必威体育下载 , 2017, 66(14): 146101.doi:10.7498/aps.66.146101
      [5] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄.金属玻璃的热塑性成型. 必威体育下载 , 2017, 66(17): 176404.doi:10.7498/aps.66.176404
      [6] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭.Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 必威体育下载 , 2017, 66(19): 196101.doi:10.7498/aps.66.196101
      [7] 郭古青, 吴诗阳, 蔡光博, 杨亮.判定金属玻璃微观结构中的二十面体类团簇. 必威体育下载 , 2016, 65(9): 096402.doi:10.7498/aps.65.096402
      [8] 王海燕, 胡前库, 杨文朋, 李旭升.金属元素掺杂对TiAl合金力学性能的影响. 必威体育下载 , 2016, 65(7): 077101.doi:10.7498/aps.65.077101
      [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬.磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 必威体育下载 , 2013, 62(3): 036801.doi:10.7498/aps.62.036801
      [10] 喻利花, 马冰洋, 曹峻, 许俊华.(Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 必威体育下载 , 2013, 62(7): 076202.doi:10.7498/aps.62.076202
      [11] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯.源于团簇-共振模型的理想金属玻璃电子化学势均衡. 必威体育下载 , 2012, 61(3): 036402.doi:10.7498/aps.61.036402
      [12] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明.冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 必威体育下载 , 2012, 61(19): 196202.doi:10.7498/aps.61.196202
      [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊.虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 必威体育下载 , 2012, 61(16): 167101.doi:10.7498/aps.61.167101
      [14] 徐春龙, 侯兆阳, 刘让苏.Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 必威体育下载 , 2012, 61(13): 136401.doi:10.7498/aps.61.136401
      [15] 罗庆洪, 陆永浩, 娄艳芝.Ti-B-C-N纳米复合薄膜结构及力学性能研究. 必威体育下载 , 2011, 60(8): 086802.doi:10.7498/aps.60.086802
      [16] 罗庆洪, 娄艳芝, 赵振业, 杨会生.退火对AlTiN多层薄膜结构及力学性能影响. 必威体育下载 , 2011, 60(6): 066201.doi:10.7498/aps.60.066201
      [17] 余伟阳, 唐壁玉, 彭立明, 丁文江.α-Mg3Sb2的电子结构和力学性能. 必威体育下载 , 2009, 58(13): 216-S223.doi:10.7498/aps.58.216
      [18] 李 腾, 李 卫, 潘 伟, 李岫梅.Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 必威体育下载 , 2005, 54(9): 4395-4399.doi:10.7498/aps.54.4395
      [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中.7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 必威体育下载 , 2005, 54(4): 1665-1670.doi:10.7498/aps.54.1665
      [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬.TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 必威体育下载 , 2005, 54(10): 4846-4851.doi:10.7498/aps.54.4846
    计量
    • 文章访问数:6331
    • PDF下载量:642
    • 被引次数:0
    出版历程
    • 收稿日期:2017-06-01
    • 修回日期:2017-06-27
    • 刊出日期:2017-09-05

      返回文章
      返回
        Baidu
        map