搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    梁月凤, 张劭光

    Shape transformations of opening-up vesicles with one hole

    Liang Yue-Feng, Zhang Shao-Guang
    PDF
    导出引用
    • 基于双层耦合模型,先通过求解无黏附能情况下满足给定边界条件的欧拉-拉格朗日方程组,找到了约化面积差a稍大于1的内凹开口形状解,并发现以往Umeda和Suezaki(2005 Phys.Rev.E 71 011913)给出的杯形解是对应a1的另一支解,该支解在a趋于1时开口是外凸的.进而在无黏附能和有黏附能的情况下对开口膜泡的两支解进行了深入研究,发现在a=1附近这两支解之间有一个间隙,在该间隙内不存在开口解.随着黏附半径的增大,该间隙的位置较缓慢地向右移动.在a=1附近,在无黏附能时的闭合形状只有球形一个解,而在有黏附能的情况下,闭合形状在1附近的一个区间内都有解.在无黏附及有黏附情况下的计算结果都表明这两支开口解及闭合形状属于不同的分支,它们之间不能连续演化.在间隙右侧的这一支解随着a的增大可以通过自交形状连续地演化到开口哑铃形.在有黏附的情况下,在a参数空间,同一支解会发生折叠,即出现同一a值对应多个解(形状)的情况,这在以往双层耦合模型的计算中没有出现过.讨论了a对无黏附和有黏附开口膜泡的形状和能量的影响.
      So far two kinds of solutions to the problem of opening-up vesicles with one hole have been found. One is cup-like shape found by Umeda and Suezaki (2005 Phys. Rev. E 71 011913), the other is dumbbell shape with one hole, found by our group. As seen in the context of the bilayer coupling (BC) model, the former corresponds to relatively small reduced area difference a, and the latter corresponds to relatively large value of a. The relationship between these two kinds of shapes is not clear. Viewing from the angle of the cup-like shape, whether one can obtain the dumbbell shape by increasing a is not known. In this paper, we try to clarify this problem by solving the shape equations for free vesicles and adhesive vesicles based on the BC model. Firstly, we solve the set of Euler-Lagrange shape equations that satisfy certain boundary conditions for free vesicles. A branch of solution with an inward hole is found with the reduced area difference a slightly greater than 1. It is verified that the solution named cuplike vesicles, which was found by Umeda and Suezaki, belongs to another solution branch (a 1) with an outward hole near a=1. According to this result, we make a detailed study of these two solution branches for free vesicles and vesicles with adhesion energy. We find that there is a gap near a=1 between the two solution branches. For a in this gap, there is no opening-up solution. For adhesive vesicles, the gap will move towards the right side slowly with increasing adhesive radius. In order to check whether the two solution branches can evolve into closed shapes, we also make a calculation for closed vesicles. For free closed vesicles, we find that there is only the sphere solution when a is exactly equal to 1 for p=0 (in order to comply with the opening-up vesicle, no volume constraint is imposed on it), while for adhesive vesicles there exist closed solutions in a region of a without volume constraint. Both studies for free vesicles and adhesive vesicles show that these two kinds of opening-up vesicles belong to different solution branches. They cannot evolve from one to the other with continuous parameter changing. And strictly speaking, they cannot evolve into the closed vesicles. With increasing a, the opening-up branch on the right side of the gap can evolve into an opening-up dumbbell shape with one hole via the self-intersection intermediate shapes. Another interesting result is that for adhesive opening-up vesicles, in the a parametric space, the solutions are folded for a solution branch, which means that there exist several shapes corresponding to the same a value in the folding domain. This phenomenon has never occurred in previous study of the closed vesicles under the BC model. The influences of a on the shape and energy of the free vesicles and adhesive vesicles are also studied.
          通信作者:张劭光,zhangsg@snnu.edu.cn
        • 基金项目:中央高校基本科研业务费专项资金(批准号:GK201302011)和国家自然科学基金(批准号:10374063)资助的课题.
          Corresponding author:Zhang Shao-Guang,zhangsg@snnu.edu.cn
        • Funds:Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.GK201302011) and the National Natural Science Foundation of China (Grant No.10374063).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

      • [1] 左馨怡, 雷照康, 武耀蓉, 王成会.黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 必威体育下载 , 2024, 73(15): 154301.doi:10.7498/aps.73.20240606
        [2] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢.MoS2/SiO2界面黏附性能的尺寸和温度效应. 必威体育下载 , 2024, 73(5): 056801.doi:10.7498/aps.73.20231648
        [3] 赵丽霞, 王成会, 莫润阳.多层膜磁性微泡的非线性声振动特性. 必威体育下载 , 2021, 70(1): 014301.doi:10.7498/aps.70.20200973
        [4] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博.纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 必威体育下载 , 2018, 67(3): 030201.doi:10.7498/aps.67.20172153
        [5] 杨盼, 涂展春.生物膜泡形状问题的理论研究. 必威体育下载 , 2016, 65(18): 188701.doi:10.7498/aps.65.188701
        [6] 孔祥波, 张劭光.用弛豫法探寻新的双开口膜泡. 必威体育下载 , 2016, 65(6): 068701.doi:10.7498/aps.65.068701
        [7] 王成会, 莫润阳, 胡静, 陈时.球状泡群内气泡的耦合振动. 必威体育下载 , 2015, 64(23): 234301.doi:10.7498/aps.64.234301
        [8] 冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚.可延展柔性无机微纳电子器件原理与研究进展. 必威体育下载 , 2014, 63(1): 014201.doi:10.7498/aps.63.014201
        [9] 王康, 邓爱红, 刘莉, 李悦, 周宇璐, 侯氢, 周冰, 王珊玲.掺He钛膜中He泡的演化研究. 必威体育下载 , 2012, 61(22): 226802.doi:10.7498/aps.61.226802
        [10] 段芳莉, 杨继明, 仇和兵, 吴聪颖.表面黏附导致的接触行为转变. 必威体育下载 , 2012, 61(1): 016201.doi:10.7498/aps.61.016201
        [11] 白占国, 董丽芳, 李永辉, 范伟丽.双层耦合Lengel-Epstein模型中的超点阵斑图. 必威体育下载 , 2011, 60(11): 118201.doi:10.7498/aps.60.118201
        [12] 田文超, 王林滨, 贾建援.Casimir力、Hamaker力及黏附“突跳”研究. 必威体育下载 , 2010, 59(2): 1175-1179.doi:10.7498/aps.59.1175
        [13] 李树玲, 张劭光.双凹盘形解开口膜泡形状的解析法研究. 必威体育下载 , 2010, 59(8): 5202-5208.doi:10.7498/aps.59.5202
        [14] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉.几种微构件材料的表面能及纳观黏附行为研究. 必威体育下载 , 2009, 58(4): 2518-2522.doi:10.7498/aps.58.2518
        [15] 曹鸿霞, 张 宁.磁电双层膜层间耦合的弹性力学研究. 必威体育下载 , 2008, 57(5): 3237-3243.doi:10.7498/aps.57.3237
        [16] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚.基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 必威体育下载 , 2007, 56(10): 6137-6142.doi:10.7498/aps.56.6137
        [17] 卿 涛, 邵天敏, 温诗铸.材料表面之间黏附过程分析. 必威体育下载 , 2007, 56(3): 1555-1562.doi:10.7498/aps.56.1555
        [18] 蒋益明, 谢亨博, 郭 峰, 刘 平, 李 劲.金属有机双层膜传质模型理论研究. 必威体育下载 , 2005, 54(12): 5769-5773.doi:10.7498/aps.54.5769
        [19] 姜宏伟, 李明华, 王艾玲, 郑鹉.NiFe/FeMn双层膜的交换耦合. 必威体育下载 , 2004, 53(4): 1232-1235.doi:10.7498/aps.53.1232
        [20] 杨国林, 李伯臧, 李列明, 孙刚, 吴建华, 蒲富恪.磁性多层膜层间交换耦合的自由电子模型研究. 必威体育下载 , 1996, 45(5): 869-884.doi:10.7498/aps.45.869
      计量
      • 文章访问数:5221
      • PDF下载量:198
      • 被引次数:0
      出版历程
      • 收稿日期:2017-04-15
      • 修回日期:2017-05-05
      • 刊出日期:2017-08-05

        返回文章
        返回
          Baidu
          map