Structure illumination microscopy (SIM) is a novel imaging technique with advantages of high spatial resolution, wide imaging field and fast imaging speed. By illuminating the sample with patterned light and analyzing the information about Moir fringes outside the normal range of observation, SIM can achieve about 2-fold higher in resolution than the diffraction limit, thus it has played an important role in the field of biomedical imaging. In recent years, to further improve the resolution of SIM, people have proposed a new technique called plasmonic SIM (PSIM), in which the dynamically tunable sub-wavelength surface plasmon fringes are used as the structured illuminating light and thus the resolution reaches to 3-4 times higher than the diffraction limit. The PSIM technique can also suppress the background noise and improve the signal-to-noise ratio, showing great potential applications in near-surface biomedical imaging. In this review paper, we introduce the principle and research progress of PSIM. In Section 1, we first review the development of optical microscope, including several important near-field and far-field microscopy techniques, and then introduce the history and recent development of SIM and PSIM techniques. In Section 2, we present the basic theory of PSIM, including the dispersion relation and excitation methods of surface plasmon, the principle and imaging process of SIM, and the principle of increasing resolution by PSIM. In Section 3, we review the recent research progress of two types of PSIMs in detail. The first type is the nanostructure-assisted PSIM, in which the periodic metallic nanostructures such as grating or antenna array are used to excite the surface plasmon fringes, and then the shift of fringes is modulated by changing the angle of incident light. The resolution of such a type of PSIM is mainly dependent on the period of nanostructure, thus can be improved to a few tens of nanometers with deep-subwavelength structure period. The other type is the all-optically controlled PSIM, in which the structured light with designed distribution of phase or polarization (e.g. optical vortex) is used as the incident light to excite the surface plasmon fringes on a flat metal film, and then the fringes are dynamically controlled by modulating the phase or polarization of incident light. Without the help of nanostructure, such a type of PSIM usually has a resolution of about 100 nm, but benefits from the structureless excitation of plasmonic fringes in an all-optical configuration, thereby showing more dynamic regulation and reducing the need to fabricate nanometer-sized complex structures. In the final Section, we summarize the features of PSIM and discuss the outlook for this technique. Further studies are needed to improve the performance of PSIM and to expand the scope of practical applications in biomedical imaging.