搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚

Meta-antenna: principle, device and application

Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang
PDF
导出引用
  • 自从电磁波被发现和应用以来,利用各种材料或者结构调节电磁波的辐射行为、构造高性能的电磁辐射器件一直是研究人员的追求目标。经过百余年的发展,电磁辐射器件的方向性提高、带宽拓展等技术逐渐达到瓶颈。受自然材料电磁特性的限制,微带天线、喇叭天线等传统电磁辐射器件存在体积重量大、工作带宽窄、无法快速动态调控等缺陷,难以满足日益发展的通信技术的需求。近年来出现的亚波长结构可在深度亚波长尺度下调控电磁波的传输行为,出现了多种奇异的电磁现象,完善了传统的电磁学理论,在一定程度上突破了传统材料电磁特性的限制,形成全新的电磁辐射技术,有效解决了传统天线存在的口径大、厚度高、带宽窄等难题,促进了电磁学、光子学、材料学等领域的发展。这种基于超构材料的新型天线可以被称为超构天线,其具有高方向性、低副瓣、超宽带、可重构等传统天线难以实现的功能。本文主要回顾了近年来基于亚波长超构材料的超构天线技术的发展现状和取得的成果,介绍了超构材料在亚波长尺度下对电磁波振幅、相位、偏振态等的衍射调控机理,以及在此基础上形成的新型辐射器件,例如相控阵天线、高方向性天线、低雷达散射截面天线,基于亚波长结构的多种偏振调控器件及其在天线中的应用等。在衍射极限尺度下,这种亚波长结构的调控行为可有效提升电磁辐射器件的方向性、带宽,并可重构天线的工作频率、偏振态等性能。
    Since electromagnetic waves were discovered, effectively controlling them has been a goal and radiators with better characteristics have always been chased by researchers. However, limited by the electromagnetic properties of nature materials, traditional radiation technology is reaching its bottleneck. For example, traditional microwave antenna has the disadvantages of large volume, heavy weight, narrow operating frequency band, etc., and cannot satisfy the development requirement of modern communication systems. Therefore, the state-of-art radiation technology meets the challenge of minimizing the size and broadening the bandwidth of radiators, and constructingmulti-functional and reconfigurable antennas. In recent years, metamaterials have aroused great interest due to the extraordinary diffraction manipulation on a subwavelength scale. Fruitful bizarre electromagnetic phenomena, such as negative refraction index, planar optics, perfect lens, etc. have been observed in metamaterials, and the corresponding theories improve the fundamental principle systems of electromagnetics. Based on these novel theories, a series of new radiators has been proposed, which has effectively overcome the difficulties in traditional radiation technology and broken through the limits of natural electromagnetic materials. The relating theory and technology may greatly promote the development of electromagnetics, optics, materials. In this article, we mainly review the recent progress in the novel electromagnetic radiation technology based on metamaterials, which is named meta-antenna, including the principle of diffraction manipulation of metamaterial to control the amplitude, phase and polarization of the incident electromagnetic waves. Subsequently, a series of radiation devices is introduced, including the new phased array antenna on the concept of phase manipulating metamaterial, and the high directivity antenna based on zero refraction index metamaterial and photonic crystal, and the low RCS antenna simultaneously has the functions of gain enhancement and stealth ability. Besides, the polarization manipulation characteristics of metamaterial are also reviewed. The anisotropic and chiral metamaterials are analyzed, and several polarizers with broadband characteristics and reconfigurable ability are introduced. Furthermore, due to the importance as future radiation sources, nanolasers that work on a subwavelengh scale are demonstrated. Finally, we point out the current problems and future trend of the radiation technology based on metamaterials.
        通信作者:罗先刚,lxg@ioe.ac.cn
      • 基金项目:国家重点基础研究发展计划(批准号:2013CBA01700)和国家自然科学基金(批准号:61405201,61675208)资助的课题.
        Corresponding author:Luo Xian-Gang,lxg@ioe.ac.cn
      • Funds:Project supported by the National Basic Research Program of China (Grant No. 2013CBA01700) and the National Natural Science Foundation of China (Grant Nos. 61405201, 61675208).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

    • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧.基于柔性超构材料宽带调控太赫兹波的偏振态. 必威体育下载 , 2022, 71(18): 187802.doi:10.7498/aps.71.20220801
      [2] 冯奎胜, 李娜, 杨欢欢.电磁超构表面与天线结构一体化的低RCS阵列. 必威体育下载 , 2021, 70(19): 194101.doi:10.7498/aps.70.20210746
      [3] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东.基于亚波长金属超构光栅的中红外大角度高效率回射器. 必威体育下载 , 2020, 69(1): 014211.doi:10.7498/aps.69.20191144
      [4] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强.含双曲超构材料的复合周期结构的带隙调控及应用. 必威体育下载 , 2020, 69(15): 154205.doi:10.7498/aps.69.20200084
      [5] 周毅, 陈瑞, 陈雯洁, 马云贵.空域模拟光学计算器件的研究进展. 必威体育下载 , 2020, 69(15): 157803.doi:10.7498/aps.69.20200283
      [6] 林月钗, 刘仿, 黄翊东.基于超构材料的Cherenkov辐射. 必威体育下载 , 2020, 69(15): 154103.doi:10.7498/aps.69.20200260
      [7] 杨鹏, 秦晋, 徐进, 韩天成.超薄柔性透射型超构材料吸收器. 必威体育下载 , 2019, 68(8): 087802.doi:10.7498/aps.68.20182225
      [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成.基于方形开口环的超宽带线性极化转换器. 必威体育下载 , 2019, 68(11): 117801.doi:10.7498/aps.68.20190267
      [9] 权家琪, 圣宗强, 吴宏伟.基于人工表面等离激元结构的全向隐身. 必威体育下载 , 2019, 68(15): 154101.doi:10.7498/aps.68.20190283
      [10] 姚尧, 沈悦, 郝加明, 戴宁.基于亚波长人工微结构的电磁波减反增透研究进展. 必威体育下载 , 2019, 68(14): 147802.doi:10.7498/aps.68.20190702
      [11] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元.金属亚波长结构的表面增强拉曼散射. 必威体育下载 , 2019, 68(14): 147401.doi:10.7498/aps.68.20190458
      [12] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨.基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 必威体育下载 , 2018, 67(11): 118102.doi:10.7498/aps.67.20180125
      [13] 杨鹏, 韩天成.极化控制的双波段宽带红外吸收器研究. 必威体育下载 , 2018, 67(10): 107801.doi:10.7498/aps.67.20172716
      [14] 蒲明博, 王长涛, 王彦钦, 罗先刚.衍射极限尺度下的亚波长电磁学. 必威体育下载 , 2017, 66(14): 144101.doi:10.7498/aps.66.144101
      [15] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿.超构材料中的光学量子自旋霍尔效应. 必威体育下载 , 2017, 66(22): 227803.doi:10.7498/aps.66.227803
      [16] 邓俊鸿, 李贵新.非线性光学超构表面. 必威体育下载 , 2017, 66(14): 147803.doi:10.7498/aps.66.147803
      [17] 徐新河, 刘鹰, 甘月红, 刘文苗.磁电耦合超材料本构矩阵获取方法的研究. 必威体育下载 , 2015, 64(4): 044101.doi:10.7498/aps.64.044101
      [18] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅.亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 必威体育下载 , 2012, 61(9): 098401.doi:10.7498/aps.61.098401
      [19] 陈英明, 王秉中, 葛广顶.微波时间反演系统的空间超分辨率机理. 必威体育下载 , 2012, 61(2): 024101.doi:10.7498/aps.61.024101
      [20] 章志敏, 王秉中, 葛广顶.一种用于时间反演通信的亚波长天线阵列设计. 必威体育下载 , 2012, 61(5): 058402.doi:10.7498/aps.61.058402
    计量
    • 文章访问数:7510
    • PDF下载量:1183
    • 被引次数:0
    出版历程
    • 收稿日期:2017-04-17
    • 修回日期:2017-05-14
    • 刊出日期:2017-07-05

      返回文章
      返回
        Baidu
        map