搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

柴路, 牛跃, 栗岩锋, 胡明列, 王清月

Recent progress of tunable terahertz sources based on difference frequency generation

Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue
PDF
导出引用
  • 太赫兹技术在最近30年来得到快速发展, 并在医学、生物、农业、材料、安检、通信、天文等领域得到广泛应用. 从太赫兹源的频谱特性可以分为窄带(单频)太赫兹源和宽带太赫兹源. 从频谱技术方面来说, 相干的宽带和窄带太赫兹谱是一种互补性关系, 具有各自的技术特点和应用范围. 宽带太赫兹谱可以用于快速获取较宽频谱范围的分子振转谱, 实现混合特征谱的快速检测或成像. 窄带太赫兹源具有很好的光谱灵敏度和分辨率, 适用于太赫兹抽运-探测、分子振转能级谱精细结构分辨 以及太赫兹远程探测和成像. 因此研制具有可调谐的高峰值功率的窄带太赫兹源是适用于探测和识别分子振转能级指纹谱的应用需求, 而差频技术是获得高功率和宽调谐窄带太赫兹源最重要的技术之一. 为了突出该技术的最新进展, 本综述引证论文仅仅限于近5 年来基于差频技术产生太赫兹波的研究进展, 分为光学激光差频源和量子级联激光器差频源两大部分. 对于光学激光差频源, 分别对目前文献报道的各种双波长差频源和太赫兹产生用的非线性晶体进行分类介绍, 并给出所采用的技术和实验结果; 对于量子级联激光器差频源, 分别介绍了量子级联激光器中的差频产生技术和波长调谐技术的最新进展. 量子级联激光器差频太赫兹源是目前实现量子级联激光器在太赫兹波段室温运转的惟一技术, 是实现小型化、窄带宽调谐和室温运转太赫兹源的新发展领域, 值得关注.
    Terahertz technology has been developed rapidly in the past 30 years. Numerous applications in medicine, biology, agriculture, materials, security, communication and astronomy have been demonstrated. Terahertz sources can be divided into narrowband (monochromatic) source and broadband source according to their spectral characteristics. From a spectral perspective, coherent broadband and narrowband terahertz sources are mutually complementary, each having its own characteristics and scope of applications. Broadband terahertz sources can be used for quick access to the hybrid spectra of rotational and vibrational molecular fingerprints or imaging in a wider spectral range. Narrowband terahertz source with good spectral resolution and sensitivity, is suitable for pump-probe, fine structure resolution of molecular fingerprints and terahertz remote detection and imaging. Therefore, developing the tunable high peak power and narrowband terahertz sources is very important for the applications in the detection and identification of molecular fingerprints. The difference frequency generation is one of the most important techniques for obtaining widely tunable, high power and narrowband terahertz sources. In this review, the recent progress of tunable terahertz sources based on the difference frequency generation in the last five years is reviewed, including the two fields of optical laser-based difference frequency sources and quantum cascade laser-based difference frequency sources. For the former class, the experimental results from reports with different difference frequency sources and several typical nonlinear crystals are classified, and the corresponding experimental techniques and results are introduced. For terahertz wave generation, different optical difference frequency sources by a dual-wavelength laser, double laser, a laser and an optical parametric oscillator (OPO), the signal and idler waves of an OPO, and double OPOs are demonstrated in increasing their tunabilities. Significant progress has been made in the nonlinear crystals used to generate terahertz wave by the difference frequency process, for example, by improving the property of inorganic crystals with ion doping, taking advantage of waveguide and PPLN structures, and especially developing novel nonlinear organic crystals. For the quantum cascade laser-based difference frequency sources, the latest advances in the techniques of difference frequency generation and wavelength tunability are presented. GaAs-based terahertz quantum cascade lasers are powerful semiconductor THz sources but cryogenic cooling is still a necessity. Recently, difference frequency generation was combined with the mid-infrared quantum cascade laser technology, thus becoming a leading room temperature semiconductor source in the terahertz range. To improve the frequency tuning range in the difference frequency terahertz quantum cascade laser, wavelength tuning techniques of the inner cavity and the external cavity have been developed. The difference frequency generation quantum cascade terahertz laser source has been the only technique workable at room temperature for the quantum cascade laser so far, which opens the door for developing the compact and widely tunable room temperature terahertz sources.
        通信作者:柴路,lu_chai@tju.edu.cn
      • 基金项目:国家重点基础研究发展计划(批准号: 2011CB808101, 2014CB339800)、国家自然科学基金(批准号: 61377041, 61377047, 61322502)、教育部长江学者和创新团队发展计划(批准号: IRT13033)资助的课题.
        Corresponding author:Chai Lu,lu_chai@tju.edu.cn
      • Funds:Project supported by the National Basic Research Program of China (Grant Nos. 2011CB808101, 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61377041, 61377047, 61322502), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13033).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

    • [1] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜.自旋电子太赫兹源研究进展. 必威体育下载 , 2020, 69(20): 200703.doi:10.7498/aps.69.20200623
      [2] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水.太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 必威体育下载 , 2019, 68(2): 021101.doi:10.7498/aps.68.20181882
      [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚.太赫兹量子级联激光器频率梳的色散. 必威体育下载 , 2019, 68(10): 109501.doi:10.7498/aps.68.20190217
      [4] 周超, 张磊, 李劲松.基于单个量子级联激光器的大气多组分测量方法. 必威体育下载 , 2017, 66(9): 094203.doi:10.7498/aps.66.094203
      [5] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚.三阶分布反馈太赫兹量子级联激光器的远场分布特性. 必威体育下载 , 2017, 66(9): 099501.doi:10.7498/aps.66.099501
      [6] 左剑, 张亮亮, 巩辰, 张存林.太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 必威体育下载 , 2016, 65(1): 010704.doi:10.7498/aps.65.010704
      [7] 赵文娟, 陈再高, 郭伟杰.慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 必威体育下载 , 2015, 64(15): 150702.doi:10.7498/aps.64.150702
      [8] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚.2.9THz束缚态向连续态跃迁量子级联激光器研制. 必威体育下载 , 2013, 62(21): 210701.doi:10.7498/aps.62.210701
      [9] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩.磷化镓高功率太赫兹共线差频源的研究. 必威体育下载 , 2013, 62(12): 120704.doi:10.7498/aps.62.120704
      [10] 刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲.基于场致发射阴极阵列的太赫兹源的物理机理研究. 必威体育下载 , 2012, 61(12): 127901.doi:10.7498/aps.61.127901
      [11] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚.基于太赫兹量子级联激光器的无线信号传输的实现. 必威体育下载 , 2012, 61(9): 098701.doi:10.7498/aps.61.098701
      [12] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏.级联差频产生太赫兹辐射的理论研究. 必威体育下载 , 2011, 60(3): 034210.doi:10.7498/aps.60.034210
      [13] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚.半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 必威体育下载 , 2010, 59(3): 2169-2172.doi:10.7498/aps.59.2169
      [14] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠.太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 必威体育下载 , 2010, 59(12): 8484-8489.doi:10.7498/aps.59.8484
      [15] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚.太赫兹量子级联激光器材料生长及表征. 必威体育下载 , 2009, 58(10): 7083-7087.doi:10.7498/aps.58.7083
      [16] 刘 欢, 徐德刚, 姚建铨.基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究. 必威体育下载 , 2008, 57(9): 5662-5669.doi:10.7498/aps.57.5662
      [17] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中.Si/SiGe量子级联激光器的能带设计. 必威体育下载 , 2007, 56(7): 4137-4142.doi:10.7498/aps.56.4137
      [18] 徐刚毅, 李爱珍.量子级联激光器有源核中界面声子的特性研究. 必威体育下载 , 2007, 56(1): 500-506.doi:10.7498/aps.56.500
      [19] 孙 博, 姚建铨, 王 卓, 王 鹏.利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 必威体育下载 , 2007, 56(3): 1390-1396.doi:10.7498/aps.56.1390
      [20] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义.飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 必威体育下载 , 2006, 55(8): 4161-4165.doi:10.7498/aps.55.4161
    计量
    • 文章访问数:9557
    • PDF下载量:972
    • 被引次数:0
    出版历程
    • 收稿日期:2015-12-22
    • 修回日期:2016-01-21
    • 刊出日期:2016-04-05

      返回文章
      返回
        Baidu
        map